Enterprise Risk Management Formula Book

2. Series expansions (for real-valued functions)

[this page | pdf | back links]

2.1          Exponential function and natural logarithm (log) function



2.2          Binomial expansion


where  is the binomial coefficient.


If we substitute into the binomial expansion ,  and  we have (converges for any  if ):


A corollary is that:


2.3          Taylor series expansion


For one variable: if series converges (where  is the ’th derivative of  and ,  etc.):


For more than one variable: e.g. for two variables, if series converges (where   etc.):



Contents | Prev | Next

Desktop view | Switch to Mobile