Special polynomials

[Nematrian website page: SpecialPolynomials, © Nematrian 2015]
A (n 'th order) polynomial is a function of the form $y(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ where the a_{i} are constant. They appear in many guises in mathematics. Whilst it is common to focus on cases where x is a real number, there are attractions in extending their domain to relate to complex numbers, with the a_{i} also then being allowed to be complex. For example, a polynomial of order n always then has n (possibly not distinct) roots, i.e. values of x where $y(x)=0$ but even if all the a_{i} are real some of these roots may be complex.

Several special types of polynomial have been widely analysed, including:

- Legendre polynomials
- Chebshev polynomials
- Hermite polynomials
- Jacobi polynomials
- Laguerre polynomials

These polynomials all appear in a natural way when we try to approximate a functional form as follows.

Suppose we define a space of real or complex valued (continuous) functions on the interval $[a, b]$. A natural 'scalar product' of two functions $x(t)$ and $y(t)$ is then:

$$
S(x, y)=\int_{a}^{b} \varphi(t) x(t) \bar{y}(t) d t
$$

where $\bar{y}(t)$ is the complex conjugate of $y(t)$ and $\varphi(t)$ is a real continuous non-negative function (with at most finitely many zeros) called the weight function for the given scalar product. If the $x(t)$ and $y(t)$ are limited to real functions then the definition simplifies to the folloing (because the same formulae apply, but the complex

We may then, for example, define $\|f\|=S(f, f)$. If $\|f-g\|=0$ then f and g are then identical (if continuous) within the interval $[a, b]$. We also have $\|f\| \geq 0$ for all f, so we can view f as a good approximation to g if $\|f-g\|$ is close to zero. Different weight functions then indicate where within the interval $[a, b]$ we most want the approximation to be accurate.

As with any vector space, we can define a basis of orthogonal elements, f_{0}, f_{1}, \ldots (which is here infinite dimensional) which in aggregate 'span' the entire vector space, i.e. here the entire range of (continuous) functions defined on $[a, b]$. By orthogonal we mean $S\left(f_{i}, f_{j}\right)=0$ for $i \neq j$. The different special functions listed above provide natural orthogonal bases for different weight functions:

Legendre: $\varphi(t)=1$ and $[a, b]=[-1,1]$ (can also be viewed as a special case of Jacobi with $\alpha=$ $\beta=0$)

Jacobi: $\varphi(t)=(1-t)^{\alpha}(1+t)^{\beta}$ and $[a, b]=[-1,1]$

Chebyshev: the special case of the Jacobi with $\alpha=\beta=-1 / 2$ which means that they can be expressed in a simple analytical manner.

Laguerre: $\varphi(t)=e^{-t}$ and $[a, b]=[0, \infty]$
Hermite: $\varphi(t)=e^{-t^{2}}$ and $[a, b]=[-\infty, \infty]$
For example, the first few Legendre polynomials are $P_{0}(t)=0, P_{1}(t)=t, P_{2}(t)=\frac{1}{2}\left(3 t^{2}-1\right)$, $P_{3}(t)=\frac{1}{2}\left(5 t^{3}-3 t\right), \ldots$

The exact definition of each special polynomial type depends on the 'normalisation' used. This is because if $S\left(f_{i}, f_{j}\right)=0$ then $S\left(k f_{i}, f_{j}\right)=0$ for any k. The usual normalisation convention involves $\left\|f_{i}\right\|=1$ for all i.

In the financial world, the computation of many types of risk measures is mathematically akin to a evaluating a particular integral. A common way of carrying out numerical integration is to use an approach called Gaussian quadrature. This is often implemented in a fashion that makes use of some of the polynomials described above.

