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Quantitative Return Forecasting 
 

[Nematrian website page: ReturnForecasting, © Nematrian 2015] 
 
Abstract 
 
This page and its main links provide an introduction to quantitative return forecasting and explain 
the web service tools that the Nematrian website makes available to help with this activity. It is 
based on a section within Kemp (2005). 
 
Many different techniques exist for trying to predict or forecast the future movements of investment 
markets. These range from purely judgemental to purely quantitative approaches and from ones 
that concentrate on individual securities to ones that are applied to entire markets. Quantitative 
return forecasting can in effect be thought of as a special case of time series analysis. 
 
Traditional time series analysis often assumes that there is a linear relationship between the 
different variables of interest and that this function exhibits time stationarity. The analysis then in 
effect typically becomes akin to use of traditional linear regression techniques. 
 
Unfortunately, such models can only describe a relatively small number of possible market 
dynamics, in effect just regular cyclicality and purely exponential growth or decay. Such techniques 
typically seem to work rather poorly for direct identification of profitable investment strategies. 
Investment markets do show cyclical behaviour, but the frequencies of the cycles are often far from 
regular. It is easy to postulate variables that ought to influence markets, but much more difficult to 
identify ones that seem to do so consistently whilst at the same time offering significant predictive 
power. Relationships that work well over some time periods often seem to work less well over 
others. Perhaps this is not too surprising. If successful forecasting techniques were easy to find then 
presumably market prices would have already reacted, reducing or eliminating their potential to add 
value in the future. 
 
Better, therefore, are likely to be more sophisticated, quantitative return forecasting tools including 
some, like locally linear regression tools, that do not rely on time stationarity. These tools are 
implicitly more akin to how non-quantitative investment managers think and therefore may be 
expected to work more effectively in the real world. It is possible that neural networks could also 
help, although Nematrian is somewhat more sceptical about how effective such tools might be in 
practice for investment problems (because unless carefully designed they may overfit any available 
data). 
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1. Introduction 
[ReturnForecasting1] 
 
1.1 Many different techniques exist for trying to predict or forecast the future movements of 

investment markets. These range from purely judgemental to purely quantitative 
approaches and from ones that concentrate on individual stocks to ones that are applied to 
sectors or entire markets. In this set of pages on the Nematrian website we cover some of 
the more quantitative tools that have been devised for this purpose. Many very clever 
people have spent a lot of time devising quantitative ways of forecasting future investment 
returns, so in these pages cover only some of the many tools and techniques that might be 
used in practice. 

 
1.2 Quantitative return forecasting can be thought of as a special type of time series analysis. 

Hence many of the time series analysis tools that are used in other contexts may also be 
applied to quantitative investment analysis. Time series analysis can in turn be split into two 
main types, both of which are typically analysed in a mathematical context using regression 
techniques. These are: 

 
(a) Analysis of the interdependence of two or more variables measured at the same 

time, e.g. whether high inflation is associated with high asset returns. The 
assumption here is that there is some other exogenous way in which we can form an 
opinion on, say, how inflation will move in the future, and we then use this together 
exogenous view, together with an understanding of the interdependency of inflation 
and the asset return we want to forecast or predict to work out the most 
appropriate investment stance to adopt. The tools used are conceptually similar to 
those used for risk measurement, except that with risk measurement we are 
typically seeking to understand the spread of the distribution rather than its mean 
drift. 

 
(b) Analysis of the interdependence of one or more variables measured at different 

times, usually with some intuitive justification proposed for the supposed 
interdependence being claimed from the analysis. Such links (if they can be found 
and if they persist) can be used directly to identify profitable investment strategies 
(as long as the excess returns available from their use are not swamped by 
transactions costs). 

 
1.3 A simple example of a problem of the type described in 1.2(a) might involve postulating that 

there was some a linear relationship involving two time series, 𝑥𝑡 and 𝑦𝑡 (for 𝑡 = 1, … , 𝑛, 
where 𝑡 is a suitable time index) of the form 𝑦𝑡 = 𝑎 + 𝑏𝑥𝑡 + 𝑒𝑡 where the 𝑒𝑡 are random 
errors each with mean zero, and 𝑎 and 𝑏 are unknown constants. The same relationship can 
be written in vector form as 𝑦 = 𝑎 + 𝑏𝑥 + 𝑒 where 𝑥 = (𝑥1, … , 𝑥𝑛)𝑇 is a vector of 𝑛 
elements corresponding to each element of the time series etc. In such a problem the 𝑦𝑡 are 
called the dependent variables and the 𝑥𝑡 the independent variables, as in the postulated 
relationship the 𝑦𝑡 depend on the 𝑥𝑡 not vice-versa. 

 
Such a problem is most commonly solved by use of regression techniques, as explained in 
many statistics textbooks. If the 𝑒𝑡 are independent identically distributed normal random 
variables with the same variance (and same zero mean) then the maximum likelihood 
estimators of 𝑎 and 𝑏 are are the values that minimise the sum of the squared forecast 

error, i.e. ∑(𝑦𝑡 − (𝑎 + 𝑏𝑥𝑡))
2
. These are also known as their least squares estimators. More 

http://www.nematrian.com/ReturnForecasting1.aspx
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generally, we might adopt other ways of estimating these variables including minimising, 
say, the mean absolute deviation, which involves minimising ∑|𝑦𝑡 − (𝑎 + 𝑏𝑥𝑡)|. 

 
1.4 To convert this simple example into one of the sort described in 1.2(b) we might incorporate 

a one-period time lag in the above relationship, i.e. we would assume that stocks, markets 
and/or factors driving them exhibit autoregression. 

 
1.5 Typically, the mathematical framework involved can most easily be explained using vectors, 

see below. Mathematically we assume that there is some equation governing the behaviour 
of the system 𝑦𝑡 = 𝑓(𝑦𝑡−1, 𝑦𝑡−2, … ). The 𝑦𝑡 might now in general be vector quantities 
rather than scalar quantities, some of whose elements might be unobserved state variables. 
However, the simplest examples have a single (observed) series in which later terms depend 
on former ones. 

 
1.6 Traditional time series analysis generally assumes, at that 𝑓 exhibits time stationarity 

(meaning it has the same functional form for each 𝑡). More advanced variants might include 
regime shifts or the like, in which the model of the world as characterised by 𝑓 can vary in 
some well defined manner. 

 
1.7 We shall see later that time stationary models can only describe a relatively small number of 

possible market dynamics (in effect just regular cyclicality and purely exponential growth or 
decay). This is probably why traditional linear time stationary regression techniques seem to 
be rather less effective than one might hope at directly identifying profitable investment 
strategies. 

 
1.8 Investment markets do show cyclical behaviour, but the frequencies of the cycles are often 

far from regular. It is easy to postulate variables that ought to influence markets, but much 
more difficult to identify ones that seem to do so consistently whilst at the same time 
offering significant predictive power. Relationships that work well over some time periods 
often seem to work less well over others. 

 
1.9 Perhaps this is not too surprising. If successful forecasting techniques were easy to find then 

presumably this would already be well known and market prices would have already 
reacted, reducing or eliminating the potential of such forecasting techniques to add value in 
the future. In this field, as in other aspects of active investment management, it is necessary 
to stay one step ahead of others! 

 
 

2. Traditional time series analysis 
[ReturnForecasting2] 
 
2.1 Consider first a situation where we only have one time series where we are attempting to 

forecast future values from observed past values. For example, the time series followed by a 
given variable might be governed by the following relationship, where the value at time t of 
the variable is denoted by

 
𝑦𝑡 = 𝑐𝑦𝑡−1 + 𝑤𝑡 where 𝑐 is constant. 

 
2.2 This is a linear first order difference equation. A difference equation is an expression relating 

a variable 𝑦𝑡 to its previous values. The above equation is first order because only the first 
lag (𝑦𝑡−1) appears on the right hand side of the equation. It is linear because it expresses 𝑦𝑡 
as a linear function of 𝑦𝑡−1 and the innovations 𝑤𝑡. 𝑤𝑡 are often treated as random 
variables, but we do not always need to do this. 

http://www.nematrian.com/ReturnForecasting2.aspx
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2.3 Such a model of the world is also an autoregressive model, with a unit time lag and is 

therefore typically referred to as an 𝐴𝑅(1) model. It is also time stationary, since 𝑐 is 
constant. Nearly all linear time series analysis assumes time invariance. We could however 
introduce secular changes by assuming one of the variables on which the time series is 
based is a dummy variable linked to time. An example commonly referred to in the 
quantitative investment literature is a dummy variable set equal to 1 in January but 0 
otherwise, to identify whether there is any ‘January’ effect. 

 
2.4 If we know the value 𝑦0 at 𝑡 = 0 then we find using recursive substitution that 𝑦𝑡 = 𝑐𝑡𝑦0 +

∑ 𝑐𝑡−𝑗𝑤𝑗
𝑡
𝑗=1 .  We can also determine the effect of each individual 𝑤𝑡  on, say, 𝑦𝑡+𝑗, the 

value of 𝑦 that is 𝑗 time periods further into the future value than 𝑦𝑡. This is sometimes 

called the dynamic multiplier 
𝜕𝑦𝑡+𝑗

𝜕𝑤𝑡
= 𝑐𝑗. If |𝑐| < 1 then such a system is stable, in the sense 

that the consequences of a given change in 𝑤𝑡 will eventually die out. It is unstable if |𝑐| >
1. An interesting possibility is the borderline case where 𝑐 = 1, when the output variable 
𝑦𝑡+𝑗 is the sum of its initial starting value and historical inputs. 

 
2.5 We can generalise the above dynamic system to be a linear p’th order difference equation 

by making it depend on the first 𝑝 lags along with the current value of the innovation (input 
value) 𝑤𝑡,  i.e. 𝑦𝑡 = 𝑐1𝑦𝑡−1 + 𝑐2𝑦𝑡−2 + ⋯ + 𝑐𝑝𝑦𝑡−𝑝 + 𝑤𝑡. This can be rewritten in 

vector/matrix form as a first order difference equation, but relating to a vector, if we define 
the vector as follows: 

 

𝐠𝑡 ≡ (

𝑦𝑡

𝑦𝑡−1

⋯
𝑦𝑡−𝑝+1

) = (

𝑐1 𝑐2 ⋯ 𝑐𝑝

1 0 ⋯ 0
⋯ ⋯ ⋯ ⋯
0 1 ⋯ 0

) (

𝑦𝑡−1

𝑦𝑡−2

⋯
𝑦𝑡−𝑝

) + (

𝑤𝑡

0
⋯
0

) ≡ 𝐅. 𝐠𝑡−1 + 𝐯𝑡 

⇒ 𝐠𝑡 = 𝐅𝑡𝐠0 + ∑ 𝐅𝑡−𝑗𝐯𝑗

𝑡

𝑗=1

 

 
2.6 These sorts of dynamic systems have richer structures than simple scalar difference 

equations. For a p’th order equation we have: 𝑦𝑡+𝑗 = ∑ 𝑓1,𝑘
(𝑗+1)

𝑦𝑡−𝑘
𝑝
𝑘=1 + ∑ 𝑓1,1

(𝑗−𝑘)
𝑤𝑡+𝑘

𝑗
𝑘=1  

(if 𝑓𝑖,𝑘
(𝑗)

 is the element in the i’th row and k’th column of 𝐅𝑗). To analyse the characteristics of 

such a system in more detail, we first need to identify the eigenvalues of 𝐅. These are the 
values of 𝜆 for which |𝐅 − 𝜆𝐈| = 0 where 𝐈 is the identity matrix. They are the roots to the 
following equation: 

 
𝜆𝑝 − 𝑐1𝜆𝑝−1 − 𝑐2𝜆𝑝−2 − ⋯ − 𝑐𝑝−1𝜆 − 𝑐𝑝 = 0 

 
2.7 A p’th order equation such as this always has p roots, but some of these may be complex 

numbers rather than real ones, even if (as would be the case in practice for investment time 
series) all the 𝑐𝑗 are real numbers. Complex roots correspond to cyclical (sinusoidal) 

behaviour. We can therefore have combinations of exponential decay, exponential growth 
and sinusoidal (perhaps damped or inflating) behaviour. For such a system to be stable we 
require all the eigenvalues 𝜆 to satisfy |𝜆| < 1, i.e. for their absolute values all to be less 
than unity. 

 
2.8 Eigenvalues are closely associated with principal components analysis. All non-negative 

definite symmetric 𝑛 × 𝑛 matrices, 𝐕, will have 𝑛 non-negative eigenvalues 𝜆1, … , 𝜆𝑛 and 
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associated eigenvectors 𝐱1, … , 𝐱𝑛 (the eigenvectors can sometimes be degenerate) that 
satisfy 𝐕𝐱𝑖 = 𝜆𝑖𝐱𝑖. The eigenvalues can be the same in which case the eigenvectors can be 
degenerate. The eigenvectors are orthogonal (or can be chosen to be orthogonal if they are 
degenerate), so that any n-vector 𝐩 can be written as 𝐩 = 𝑝1𝐱1 + 𝑝2𝐱2 + ⋯ + 𝑝𝑛𝐱𝑛. 

 
2.9 The principal components are the eigenvectors of the relevant covariance matrix 

corresponding to the largest eigenvalues, since they explain the greatest amount of variance 
when averaged over all possible positions. This is because 𝐩 = 𝑝1𝐱1 + 𝑝2𝐱2 + ⋯ + 𝑝𝑛𝐱𝑛. 
There is no fundamental reason why all stocks should be given equal weight in this averaging 
process. Different weighting schemas result in different vectors being deemed ‘principal’. 

 
 

3. The spectrum and z-transform of a time series 
[ReturnForecasting3] 
 
3.1 An equivalent way of analysing a time series is via its spectrum since we can transform a 

time series into a frequency spectrum (and vice versa) using Fourier transforms. Take for 
example another sort of prototypical time series model, i.e. the moving average or MA 
model. This assumes that the output depends purely on an input series (without 
autoregressive components), i.e.:  

 

𝑦𝑡 = ∑ 𝑏𝑘𝑤𝑡−𝑘+1

𝑁

𝑘=1

 

 
3.2 There are three equivalent characterisations of a 𝑀𝐴 model: 
 

(a) In the time domain - i.e. directly via the 𝑏1, … , 𝑏𝑁. 
 

(b) In the form of autocorrelations, i.e. 𝜌𝜏 = 𝐸((𝑦𝑡 − 𝜇)(𝑦𝑡−𝜏 − 𝜇)) 𝜎2⁄  (where 𝐸(𝑥) 

means the expected value of 𝑥 and 𝜇 = 𝐸(𝑦𝑡) and 𝜎2 = 𝐸((𝑦𝑡 − 𝜇)2). If the input to 
the system is a stochastic process with input values at different times being uncorrelated 

(i.e. 𝐸(𝑤𝑖𝑤𝑗) = 0 for 𝑖 ≠ 𝑗) then the autocorrelation coefficients become: 

 

𝜌𝜏 = {
∑ 𝑏𝑘𝑏𝑘−|𝜏|

𝑁

𝑘=|𝜏|+1

∑ 𝑏𝑘
2

𝑁

𝑘=1

⁄    if |𝜏| ≤ 𝑁

0                                              if  |𝜏| > 𝑁

 

 
(c) In the frequency domain. If the input to a 𝑀𝐴 model is an impulse then the spectrum of 

the output (i.e. the result of applying the discrete Fourier transform to the time series) is 
given by: 

 
𝑆 = |1 + 𝑏1exp(−2𝜋𝑖. 𝑓) + 𝑏2exp(−2𝜋𝑖. 2𝑓) + ⋯ + 𝑏𝑁exp(−2𝜋𝑖. 𝑁𝑓)|2 

 
3.3 It is possible to show that an AR model of the form described earlier has a power spectrum 

of the following form: 𝑆 =
1 |1 − 𝑐1 exp(−2𝜋𝑖. 𝑓) − 𝑐2 exp(−2𝜋𝑖. 2𝑓) − ⋯ − 𝑐𝑁exp (−2𝜋𝑖. 𝑁𝑓)|2⁄ . The obvious next 
step in complexity is to have both AR and MA components in the same model, e.g. an 
𝐴𝑅𝑀𝐴(𝑀, 𝑁) model, of the following form: 

 

http://www.nematrian.com/ReturnForecasting3.aspx
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𝑦𝑡 = ∑ 𝑐𝑚𝑦𝑡−𝑚

𝑀

𝑚=1

+ ∑ 𝑏𝑛𝑤𝑡−𝑛

𝑁

𝑛=1

 

 
3.4 The output of an 𝐴𝑅𝑀𝐴 model is most easily understood in terms of the z-transform, which 

generalises the discrete Fourier transform to the complex plane, i.e.: 
 

𝑋(𝑧) ≡ ∑ 𝑥𝑡𝑧𝑡

∞

𝑡=−∞

 

 
3.5 On the unit circle in the complex plane the z-transform reduces to the discrete Fourier 

transform. Off the unit circle, it measures the rate of divergence or convergence of a series. 
Convolution of two series in the time domain corresponds to the multiplication of their z-
transforms. Therefore the z-transform of the output of an 𝐴𝑅𝑀𝐴 model is: 

 

𝑌(𝑧) = 𝐶(𝑧)𝑌(𝑧) + 𝐵(𝑧)𝑊(𝑧) =
𝐵(𝑧)

1 − 𝐶(𝑧)
𝑊(𝑧) 

 
3.6 This has the form of an input z-transform 𝑊(𝑧) multiplied by a transfer function 𝑇(𝑧) =

𝐵(𝑧)(1 − 𝐶(𝑧))−1 unrelated to the input. The transfer function is zero at the zeros of the 
𝑀𝐴 term, i.e. where 𝐵(𝑧) = 0, and diverges to infinity, i.e. has poles (in a complex number 
sense), where 𝐶(𝑧) = 1, unless these are cancelled by zeros in the numerator. The number 
of poles and zeros in this equation determines the number of degrees of freedom in the 
model. Since only a ratio appears there is no unique  𝐴𝑅𝑀𝐴 model for any given system. In 
extreme cases, a finite-order 𝐴𝑅 model can always be expressed by an infinite-order 𝑀𝐴 
model, and vice versa. 

 
3.7 There is no fundamental reason to expect an arbitrary model to be able to be described in 

an 𝐴𝑅𝑀𝐴 form. However, if we believe that a system is linear in nature then it is reasonable 
to attempt to approximate its true transfer function by a ratio of polynomials, i.e. as an 
𝐴𝑅𝑀𝐴 model. This is a problem in function approximation. It can be shown that a suitable 
sequence of ratios of polynomials (called Padé approximants) converges faster than a power 
series for an arbitrary function. But this still leaves unresolved the question of what the 
order of the model should be, i.e. what values of 𝑀 and 𝑁 to adopt. This is in part linked to 
how best to approximate the z-transform. There are several heuristic algorithms for finding 
the ‘right’ order, for example the Akaike Information Criterion, see e.g. Billah, Hyndman and 
Koehler (2003). These heuristic approaches usually rely very heavily on the model being 
linear and can also be sensitive to the assumptions adopted for the error terms. 

 
3.8 This point is also related to the distinction between in-sample and out-of-sample analysis. By 

in-sample we mean an analysis carried out on a particular data set not worrying about the 
fact that later observations would not have been know about at earlier times in the analysis. 
If, as will always be the case in practice, the data series is finite then incorporating sufficient 
parameters in the model will always enable us to fit the data exactly (in much the same way 
that a sufficiently high order polynomial can always be made to fit exactly a fixed number of 
points on a curve).  

 
3.9 What normally happens is that the researcher will choose one period of time to estimate the 

parameters characterising the model and will then test the model out-of-sample using data 
for a subsequent (but still historic) time period. Sometimes the parameters will be fixed at 
the end of the in-sample period.  

http://www.nematrian.com/References.aspx?Ref=BillahEtAl2003
http://www.nematrian.com/References.aspx?Ref=BillahEtAl2003
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3.10 Alternatively, if we have some a priori knowledge about the nature of the linear relationship 

then our best estimate at any point in time will be updated as more knowledge becomes 
available in a Bayesian fashion. Updating estimates of the linear parameters in this manner is 
usually called applying a Kalman filter to the process, a technique that is also used in general 
insurance claims reserving. 

 
3.11 In derivative pricing there is a similar need to avoid look-forward bias, and this is achieved 

via the use of so called adapted series, i.e. random series where you do not know what 
future impact the randomness being assumed will have until you reach the relevant point in 
time when the randomness arises. 

 
3.12 However, it is worth bearing in mind that even rigorous policing of in-sample and out-of-

sample analysis does not avoid an implicit element of ‘look-forward-ness’ when carrying out 
back tests of how a particular quantitative return forecasting might perform in the future. 
This is because the forecasters can be thought of as having a range of possible models from 
which they might choose. They are unlikely to present results where out-of-sample 
behaviour is not as desired. Given a sufficiently large number of possible model types, it is 
always be possible to find one consistent with an in-sample analysis that also looks good in a 
subsequent out-of-sample analysis. By the time we do the analysis we actually know what 
happened in both periods. 

 
 

4. Generalising linear regression techniques 
[ReturnForecasting4] 
 
4.1 Multivariate regression involves the dependent variables (the 𝑦 described earlier) depending 

on several different independent variables simultaneously. It can be thought of as 
mathematically equivalent to univariate regression, except with everything expressed using 
vectors rather than scalars. 

 
4.2 There are several ways in which we can generalise linear regression, including: 
 

(a) Multiple regression, in which the dependent variables depend on several different 
independent variables simultaneously; 

 
(b) Heteroscedasticity, in which we assume that the 𝑒𝑡 have different (known) standard 

deviations. We then adjust the weightings assigned to each term in the sum, giving 
greater weight to the terms in which we have greater confidence; 

 
(c) Autoregression, in which the dependent data series depends not just on other 

independent data sets, but also on prior values of itself; 
 

(d) Autoregressive heteroscedasticity, in which the standard deviations of the 𝑒𝑡 vary in 
some sort of autoregressive manner; 

 
(e) Generalised linear least squares regression, in which we assume that the dependent 

variables are linear combinations of (linear) functions of the 𝑥𝑡. Least squares regression 
is merely a special case of this, consisting of a linear combination of two functions 
𝑓1(𝑥𝑡) ≡ 1 and 𝑓2(𝑥𝑡) ≡ 𝑥𝑡; 

 

http://www.nematrian.com/ReturnForecasting4.aspx
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(f) Non-normal random terms, where we no longer assume that the random terms are 
distributed as normal random variables. This is sometimes called robust regression. This 
may involve distributions where the maximum likelihood estimators minimise 
∑|𝑦𝑡 − (𝑎 + 𝑏𝑥𝑡)| in which case the formulae for the estimators then involve medians 
rather than means. We can in principle estimate the form of the dependency by the 
process of box counting, which has close parallels with the mathematical concept of 
entropy, see e.g. Press et al. (2007) or Abarbanel et al. (1993). 

 
4.3 In all of the above refinements, if we know the form of the error terms and 

heteroscedasticity then we can always transform the relationship back to a generalised 
linear regression framework by transforming the dependent variable to be linear in the 
independent variables. The noise element might in such circumstances need to be handled 
using copulas and the like. 

 
4.4 It is thus rather important to realise that only certain sorts of time series can be handled 

successfully within a linear framework however complicated are the adjustments that we 
might apply as above. All such linear models are ultimately characterised by a spectrum (or 
to be more a precise z-transform) that in general involves merely rational polynomials. Thus 
the output of all such systems is still characterised by noise superimposed on combinations 
of exponential decay, exponential growth, and regular sinusoidal behaviour. 

 
We can in principle identify the dynamics of such systems by identifying the eigenvalues and 
eigenvectors of the corresponding matrix equations. If noise does not overwhelm the system 
dynamics we should expect the spectrum/z-transform to have a small number of distinctive 
peaks corresponding to relevant zeros or poles applicable to the 𝐴𝑅 or 𝑀𝐴 elements. We 
can postulate that these correspond to the underlying dynamics of the time series. 

 
4.5 Noise will result in the spreading out of the power spectrum around these peaks. The noise 

can be ‘removed’ by replacing the observed power spectrum with one that has sharp peaks, 
albeit not with perfect accuracy (since we won’t know exactly where the sharp peak should 
be positioned). For these sorts of time series problems, the degree of external noise present 
is in some sense linked to the degree of spreading of the power spectrum around its peaks. 

 
4.6 However, the converse is not true. Merely because the power spectrum is broad (and 

without sharp peaks) does not mean that its broadband component is all due to external 
noise. Irregular behaviour can still appear in a perfectly deterministic framework, if the 
framework is chaotic. 

 
 

5. Chaotic market behaviour 
[ReturnForecasting5] 
 
5.1 To achieve chaotic behaviour (at least chaotic as defined mathematically) we need to drop 

the assumption of time stationarity, in some shape or form. This does not mean that we 
need to drop time predictability. Instead it means that the equation governing the behaviour 
of the system 𝑦𝑡 = 𝑓(𝑦𝑡−1, 𝑦𝑡−2, … ) involves a non-linear function 𝑓. 

 
5.2 This change can create quite radically different behaviour. Take for example the logistic map 

or quadratic map: 𝑦𝑡 = 𝑐𝑦𝑡−1(1 − 𝑦𝑡−1) where 𝑐 is constant. This mapping can also be 
thought of as a special case of generalised least squares regression (but not generalised 
linear least squares regression), in the sense that we can find 𝑐 by carrying out a suitable 

http://www.nematrian.com/References.aspx?Ref=PressEtAl2007
http://www.nematrian.com/References.aspx?Ref=Abarbanel1993
http://www.nematrian.com/ReturnForecasting5.aspx
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regression analysis where one of the function is a quadratic. In this equation 𝑦𝑡 depends 
deterministically on 𝑦𝑡−1 and 𝑐 is a parameter that controls the qualitative behaviour of the 
system, ranging from 𝑐 = 0 which generates a fixed point (𝑦𝑡 = 0) to 𝑐 = 4 where each 
iteration in effect destroys one bit of information. 

 

5.3 To understand the behaviour when 𝑐 = 4, we note that if we know the value to within  ( 

small) at one iteration then we will only know the position within 2 at the next iteration. 
This exponential increase in uncertainty or divergence of nearby trajectories is what is 
generally understood by the term deterministic chaos. This behaviour is quite different to 
that produced by traditional linear models. Any broadband component in the power 
spectrum output of a traditional linear model has to come from external noise. With non-
linear systems such output can be purely deterministically driven (and therefore in some 
cases predictable). The above example also shows that the systems do not need to be 
complicated to generate chaotic behaviour. 

 
5.4 The main advantages of such non-linear models are that many factors influencing market 

behaviour can be expected to do so in a non-linear fashion and the resultant behaviour 
matches observations, e.g. markets often seem to exhibit cyclical behaviour, but with the 
cycles having no set lengths, and markets are often relatively little affected by certain drivers 
in some circumstances, but affected much more by the same drivers in other circumstances. 

 
5.5 The main disadvantages of non-linear models are: 
 

(a) The mathematics is more complex; 
 

(b) Modelling underlying market dynamics in this way will make the modelling process less 
efficient if the underlying dynamics are in fact linear in nature; and 

 
(c) If markets are chaotic, then this typically places fundamental limits on the ability of any 

approach to predict more than a few time steps ahead. 
 
5.6 The last point arises because chaotic behaviour is characterised by small disturbances being 

magnified over time in an exponential fashion (as per the quadratic map described above 
with 𝑐 = 4), eventually swamping the predictive power of any model that can be built up. Of 
course, in these circumstances using linear approaches may be even less effective! 

 
5.7 Indeed, there are purely deterministic non-linear models that are completely impossible to 

use for predictive purposes even one step ahead. Take for example a situation in which 
there is a hidden state variable developing according to the following formula 𝑥𝑡 =
2𝑥𝑡−1(𝑚𝑜𝑑 1)  but we can only observe 𝑦𝑡, the integer nearest to 𝑥𝑡. The action of the map 
is most easily understood by writing 𝑥𝑡 in a binary fractional expansion, i.e. 𝑥1 =
0. 𝑑1𝑑2𝑑3 … = 𝑑1 2⁄ + 𝑑2 22⁄ + 𝑑3 23⁄ + ⋯. Each iteration shifts every digit to the right, so 
𝑦𝑡 = 𝑑𝑡. Thus this system successively reveals each digit in turn. Without prior knowledge of 
the seeding value, the output will appear to be completely random, and the past values of 𝑦𝑡 
available at time 𝑡 tell us nothing at all about values at later times! 

 
 

6. Neural networks 
[ReturnForecasting6] 
 

http://www.nematrian.com/ReturnForecasting6.aspx
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6.1 Mathematicians first realised the fundamental limitations of traditional time series analysis 
two or three decades ago. This coincided with a time when computer scientists were 
particularly enthusiastic about the prospects of developing artificial intelligence. The 
combination led to the development of neural networks. 

 
6.2 A neural network is a mathematical algorithm that takes a series of inputs and produces 

some output dependent on these inputs. The inputs cascade through a series of steps that 
are conceptually modelled on the apparent behaviour of neurons in the brain. Each step 
(‘neuron’) takes as its input signals one or more of the input feeds (and potentially one or 
more of the output signals generated by other steps), and generates an output signal that 
would normally involve a non-linear function of the inputs (e.g. a logistic function). Typically 
some of the steps are intermediate. 

 
6.3 Essentially any function of the input data can be replicated by a sufficiently complicated 

neural network. So it is not enough merely to devise a single neural network. What you 
actually need to do is to create lots of potential alternative neural networks and then 
develop some evolutionary or genetic algorithm that is used to work out which is the best 
one to use for a particular problem. Or, more usually, you define a much narrower class of 
neural networks that are suitably parameterised (maybe even just one class, with a fixed 
number of neurons and predefined linkages between these neurons, but where the non-
linear functions within each neuron are parameterised in a suitable fashion). You then train 
the neural network, by giving it some historic data, adopting a training algorithm that you 
hope will home in on an appropriate choice of parameters that are likely to work well when 
attempting to predict the future. 

 
6.4 There was an initial flurry of interest within the financial community in neural networks, but 

this interest seemed over time to subside. It is not that the brain doesn’t in some respects 
seem to work in the way that neural networks postulate. Rather, earlier computerised 
neural networks generally proved rather poor at the sorts of tasks they were being asked to 
perform in this space. 

 
6.5 More recently, with the advent of ‘Big Data’ and more powerful computers, there seems to 

have been a resurgence of interest in the topic of ‘machine learning’ and artificial 
intelligence. We can expect this to percolate into the financial community, if some firms 
identify approaches that seem successful with investment orientated problems. However, 
there is no guarantee that this will be easy. As Ghahramani (2015) notes, machine learning 
involves uncertainty, i.e. there is no certainty that investment orientated problems are easily 
amenable to such techniques, although possibly there are ways of modelling this uncertainty 
using the probabilistic framework to machine learning and therefore using probabilistic 
approaches to work out which types of investment problems are most amenable to machine 
learning techniques. He writes: 

 
“The key idea behind the probabilistic framework to machine learning is that learning 
can be thought of as inferring plausible models to explain observed data. A machine 
can use such models to make predictions about future data, and take decisions that 
are rational given these predictions. Uncertainty plays a fundamental part in all of this. 
Observed data can be consistent with many models, and therefore which model is 
appropriate, given the data, is uncertain. Similarly, predictions about future data and 
the future consequences of actions are uncertain. Probability theory provides a 
framework for modelling uncertainty.” 

 

http://www.nematrian.com/References.aspx?Ref=Ghahramani2015
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7. Locally linear time series analysis 
[ReturnForecasting7] 
 
7.1 One possible reason why neural networks were originally found to be relatively poor at 

financial problems is that the effective signal to noise ratio involved in such problems may 
be much lower than for other types of problem where they have proved more successful. In 
other words there is so much random behaviour that can’t be explained by the inputs that 
they struggle to make much sense of it. 

 
7.2 But even if this is not the case, it seems to me that disillusionment with neural networks was 

almost inevitable. Mathematically, our forecasting problem involves attempting to predict 
the immediate future from some past history. For this to be successful we must implicitly 
believe that the past does offer some guide to the future. Otherwise the task is doomed to 
failure. If the whole of the past is uniformly relevant to predicting the immediate future 
then, as we have noted above, a suitable transformation of variables moves us back into the 
realm of traditional linear time series, which we might in this context call globally linear time 
series analysis. To get the sorts of broadband characteristics that real time series return 
forecasting problems seem to exhibit you must therefore be assuming that some parts of 
the past are a better guide for forecasting the immediate future than other parts of the past. 

 
7.3 This perhaps explains growth in interest in models that include the possibility of regime 

shifts, e.g. threshold autoregressive (TAR) models or refinements. These assume that the 
world can be in one of two (or more) states, characterised by, say, 𝑦𝑡 = 𝑓1(𝑦𝑡−1, 𝑦𝑡−2, … ), 
𝑦𝑡 = 𝑓2(𝑦𝑡−1, 𝑦𝑡−2, … )  , ... and that there is some hidden variable indicating which of these 
two (or more) world states we are in at any given time. We then estimate for each observed 
time period which state we were most likely to have been in at that point in time, and we 
focus our estimation of the model applicable in these instances to information pertaining to 
these times rather than to the generality of past history. 

 
7.4 More generally, in some sense what we are trying to do is to: 
 

(a) Identify the relevance of a given element of the past to forecasting the immediate 
future, which we might quantify in the form of some mathematical measure of 
‘distance’, where the ‘distance’ between a highly relevant element of past and the 
present is deemed to be small, whilst for a less relevant element the ‘distance’ is 
greater; and 

 
(b) Carry out what is now (up to a suitable transform) a locally-linear time series analysis 

(only applicable to the current time), in which you give more weight to those elements 
of the past that are ‘closer’, in the sense of (a), to present circumstances, see e.g. 
Abarbanel et al. (1993) or Weigend & Gershenfeld (1993). 

 
7.5 Such an approach is locally linear in the sense that it involves a linear time series analysis but 

only using data that is ‘local’ (i.e. deemed relevant in a forecasting sense) to current 
circumstances. It is also implicitly how non-quantitative investment managers think. One 
often hears them saying that conditions are (or are not) similar to “the bear market of 1973-
1994”, “the Russian Debt Crisis”, “the Asian crisis” etc., the unwritten assumption being that 
what happened then is (or is not) some reasonable guide to what might happen now. 

 
7.6 Such an approach also: 

http://www.nematrian.com/ReturnForecasting7.aspx
http://www.nematrian.com/References.aspx?Ref=Abarbanel1993
http://www.nematrian.com/References.aspx?Ref=WeigendGershenfeld1993
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(a) Caters for any feature of investment markets that you think is truly applicable in all 

circumstances, since this is the special case where we deem the entire past to be ‘local’ 
to the present in terms of its relevance to forecasting the future. 

 
(b) Seems to encompass as special cases any alternative threshold autogressive model, 

because these can merely be thought of as special ways of partitioning up how such 
distances might be characterised. 

 
7.7 Such an approach thus provides a true generalisation of traditional time series analysis into 

the chaotic domain. 
 
7.8 This approach also provides some clues as to why neural networks might run into problems. 

In such a conceptual framework, the neural network training process can be thought of as 
some (relatively complicated) way of estimating the underlying model dynamics. A danger is 
that we start off with an initial definition of the class of neural networks that is then sifted 
through for a ‘good fit’ that is hugely over-parameterised. The training process should 
reduce this over-parameterisation, but by how much? If we fortuitously choose a good set of 
possible neural network structures to sift through, or if our training of the network is 
fortuitously good, then the neural network should perform well, but what are the odds of 
this actually occurring?  

 
7.9 Of course, it can be argued that a locally linear time series analysis approach also includes 

potential over-parameterisation in the sense that there is almost unlimited flexibility in how 
you might define ‘distance’ between different points in time. Indeed, perhaps the flexibility 
here is mathematically equivalent to the flexibility of structure contained within the neural 
network approach, since any neural network training approach can be reverse engineered to 
establish how much weight is being given to different pasts for each component of the 
training data. However, the flexibility inherent in choice of ‘distances’ is perhaps easier for 
humans to visualise and understand than other more abstract ways of weighting past data.  

 
7.10 Maybe the neural networkers had it the wrong way round. Maybe the neural networks 

within our brains are evolution’s way of approximating to the locally linear framework 
referred to above. Or maybe consciousness, that elusive God-given characteristic of 
humankind, will forever remain difficult to understand from a purely mechanical or 
mathematical perspective. 
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