The Nematrian website contains information and analytics on a wide range of probability distributions, including:

Discrete (univariate) distributions
- Bernoulli, see also binomial distribution
- Binomial
- Geometric, see also negative binomial distribution
- Hypergeometric
- Logarithmic
- Negative binomial
- Poisson
- Uniform (discrete)

Continuous (univariate) distributions
- Beta
- Beta prime
- Burr
- Cauchy
- Chi-squared
- Dagum
- Degenerate
- Error function
- Exponential
- F
- Fatigue, also known as the Birnbaum-Saunders distribution
- Fréchet, see also generalised extreme value (GEV) distribution
- Gamma
- Generalised extreme value (GEV)
- Generalised gamma
- Generalised inverse Gaussian
- Generalised Pareto (GDP)
- Gumbel, see also generalised extreme value (GEV) distribution
- Hyperbolic secant
- Inverse gamma
- Inverse Gaussian
- Johnson SU
- Kumaraswamy
- Laplace
- Lévy
- Logistic
- Log-logistic
- Lognormal
- Nakagami
- Non-central chi-squared
- Non-central t
- Normal
- Pareto
- Power function
- Rayleigh
- Reciprocal
- Rice
- Student’s t
- Triangular
- Uniform
- Weibull, see also generalised extreme value (GEV) distribution

Continuous multivariate distributions

- Inverse Wishart

Copulas (a copula is a special type of continuous multivariate distribution)

- Clayton
- Comonotonicity
- Countermonotonicity (only valid for \(n = 2 \), where \(n \) is the dimension of the input)
- Frank
- Generalised Clayton
- Gumbel
- Gaussian
- Independence
- \(t \)

The Nematrian website functions for fitting univariate distributions, creating random variates and calculating moments etc. now cover most of the above probability distributions, see ProbabilityDistributionsFunctions. In many cases these functions can cater for the traditional (textbook) forms of these distributions and variants that include additional shift and scale parameters.

location (i.e. shift) and scale variants

[ProbabilityDistributionsIntro2]

The location and scale of any probability distribution can be adjusted by using the (linear) transform \(Y = g + hX \) where \(g \) and \(h \) are constants (\(g \) adjusts the location, i.e. shifts the distribution, whilst \(h \) adjusts its scale). This leaves the skew and (excess kurtosis) unaltered but alters the mean and variance as \(E(Y) = g + hE(X) \) and \(var(Y) = h^2 var(X) \).

In some cases the typical distributional specification already includes such components. For example, the normal distribution \(N(\mu, \sigma^2) \) is the location and scale adjusted version of the unit normal distribution \(N(0,1) \).

In other cases the standard distributional specification does not include such adjustments. For example, the (standard) Student’s \(t \) distribution depends on just one parameter, its degrees of freedom. The probability distribution orientated Nematrian web functions recognise location and/or scale adjusted variants of wide range of standard probability distributions.
Discrete (univariate) distributions

The Bernoulli distribution

A Bernoulli trial is an experiment that has one of two possible outcomes, ‘success’ with probability \(p \) and ‘failure’ with probability \(1 - p \). The Bernoulli distribution is a probability distribution that takes the value of 1 if such a trial is a ‘success’ and 0 if it is a ‘failure’.

The Bernoulli distribution is a special case of the binomial distribution, \(B(n, p) \), with \(n = 1 \). For characteristics of the Bernoulli distribution (e.g. mean, standard deviation etc.), please refer to the corresponding characteristics for the binomial distribution.

For other probability distributions see here.

The binomial distribution

The binomial distribution \(B(n, p) \) is the discrete probability distribution applicable to the number of successes in a sequence of \(n \) independent yes/no experiments each of which has a success probability of \(p \). Each individual success/failure experiment is called a Bernoulli trial, so if \(n = 1 \) then the binomial distribution is a Bernoulli distribution.

It has the following characteristics:

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Binomial distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(X \sim B(n, p))</td>
</tr>
</tbody>
</table>
| Parameters | \(n = \) number of (independent) trials, positive integer
 \(p = \) probability of success in each trial, \(0 \leq p \leq 1 \) |
| Support | \(x \in \{0,1,...,n\} = \text{number of successes} \) |
| Probability mass function | \(f(x) = \binom{n}{x} p^x (1-p)^{n-x} = \frac{n!}{(n-x)!x!} p^x (1-p)^{n-x} \) |
| Cumulative distribution function | \(F(x) = \sum_{j=0}^{x} \binom{n}{j} p^j (1-p)^{n-j} = I_{1-p}(n-x, x+1) \) |
| Mean | \(np \) |
| Variance | \(np(1-p) \) |
| Skewness | \(\frac{1 - 2p}{\sqrt{np(1-p)}} \) |
| (Excess) kurtosis | \(\frac{1 - 6p(1-p)}{np(1-p)} \) |
| Characteristic function | \((1 - p + pe^{it})^n \) |
| Other comments | \(\text{The Bernoulli distribution is } B(1, p) \text{ and corresponds to the likelihood of success of a single experiment. Its probability mass function and cumulative distribution function are:} \)
| | \(f(x) = F(x) = \begin{cases}
 1-p, & x = 0 \\
 p, & x = 1
 \end{cases} \) |
The Bernoulli distribution with $p = 1/2$, i.e. $B(1,1/2)$, has the minimum possible excess kurtosis, i.e. -2.

The mode of $B(n,p)$ is $\text{int}((n + 1)p)$ if $(n + 1)p$ is 0 or not an integer and is n if $(n + 1)p = n + 1$. If $(n + 1)p \in \{1,2,...,n\}$ then the distribution is bi-modal, with modes $(n + 1)p$ and $(n + 1)p - 1$.

The binomial distribution is often used to model the number of successes in a sample size of n from a population size of N. Since such samples are not independent, the resulting distribution is actually a hypergeometric distribution and not a binomial distribution. However if $N \gg n$ then the binomial distribution becomes a good approximation to the relevant hypergeometric distribution and is thus often used.

In the above $\binom{n}{x}$ is the binomial coefficient.

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “binomial”. For details of other supported probability distributions see here.

The geometric distribution

[GeometricDistribution]

The geometric distribution describes the probability of x successes in a sequence of independent experiments each with likelihood of success of p that arise before there is 1 failure. It is a special case of the negative binomial distribution.

Note: different texts adopt slightly different definitions, e.g. it may be the total number of trials (i.e. 1 more than the above) in which case it may be called the shifted geometric distribution and/or p may denote the probability of failure rather than the probability of success.

The hypergeometric distribution

[HypergeometricDistribution]

The hypergeometric distribution describes the probability of x successes in n draws from a finite population size N containing m successes without replacement. This contrasts with the binomial distribution which describes the probability of x successes in n draws with replacement.

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Hypergeometric distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>$X \sim \text{Hypergeometric}(m,N,n)$</td>
</tr>
<tr>
<td>Parameters</td>
<td>$N = \text{population size, integral (}N > 0}$</td>
</tr>
<tr>
<td></td>
<td>$n = \text{sample size, integral (}0 < n \leq N}$</td>
</tr>
<tr>
<td></td>
<td>$m = \text{number of tagged items, integral (}0 < m \leq N}$</td>
</tr>
<tr>
<td>Domain</td>
<td>max($0,n + m - N) \leq x \leq \text{max}(n,m)$, x an integer</td>
</tr>
<tr>
<td>Probability mass function</td>
<td>$f(x) = \binom{m}{x} \binom{N-m}{n-x} \binom{N}{n}$</td>
</tr>
</tbody>
</table>
Cumulative distribution

\[F(x) = (x) = \sum_{j=0}^{x} \binom{m}{j} \binom{N - m}{n - j} \binom{N}{j} = 1 - \binom{n}{k + 1} \binom{N - n}{m - k - 1} Y \]

where

\[Y = \sum_{m=0}^{N} \binom{N}{m} \binom{N - m}{n - m - 1} \cdot \sum_{j=0}^{n} \binom{n}{k + 1} \binom{N - n}{m - k - 1} \]

\[pF_q \] is the generalised hypergeometric function, i.e.

\[pF_q(a_1, ..., a_p; b_1, ..., b_q; z) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \frac{z^n}{n!} \]

and \((a)_n\) involves the rising factorial or Pochhammer notation, i.e. \((a)_n = a(a + 1)(a + 2) \cdots (a + n - 1)\) and \((a)_0 = 1\)

Mean

\[\frac{nm}{N} \]

Variance

\[\frac{nm(N - m)(N - n)}{N^2(N - 1)} \]

Skewness

\[\frac{(N - 2m)(N - 1)^{1/2}(N - 2n)}{(nm(N - m)(N - n))^{1/2}(N - 2)} \]

(Excess) kurtosis

\[\frac{A + B}{C} \]

where

\[A = (N - 1)N^2 \left(N(N + 1) - 6m(N - m) - 6n(N - m) \right) \]

\[B = 6nm(N - m)(N - n)(5N - 6) \]

\[C = nm(N - m)(N - n)(N - 2)(N - 3) \]

Characteristic function

\[\frac{\left(\frac{N - m}{n} \right)}{\left(\frac{N}{n} \right)} \cdot 2F1(-n, -m; n - m - n + 1; e^{it}) \]

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “hypergeometric”. For details of other supported probability distributions see here.

The logarithmic distribution

[LogarithmicDistribution]

The logarithmic distribution arises from following power series expansion:

\[-\log(1 - p) = p + \frac{p^2}{2} + \frac{p^3}{3} + \cdots \]

This means that the function \(f(x) = -\frac{x^{p^x}}{x \log(1 - p)} \), \(x = 1, 2, 3, \ldots \) can naturally be interpreted as a probability mass function since \(\sum_{k=1}^{\infty} f(k) = 1 \).

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Logarithmic distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(X \sim \text{Log}(p))</td>
</tr>
<tr>
<td>Parameters</td>
<td>(p = \text{shape parameter} \ (0 < p < 1))</td>
</tr>
<tr>
<td>Domain</td>
<td>(1 \leq x < +\infty), (x) an integer</td>
</tr>
</tbody>
</table>
Probability mass function

\[f(x) = - \frac{p^x}{x \log(1 - p)} \]

Cumulative distribution function

\[F(x) = - \frac{1}{\log(1 - p)} \sum_{j=1}^{x} \frac{p^j}{j} = 1 + \frac{B_p(x + 1,0)}{\log(1 - p)} \]

Mean

\[\frac{p}{(1 - p) \log(1 - p)} \]

Variance

\[- \frac{p(p + \log(1 - p))}{(1 - p)^2(\log(1 - p))^2} = V \]

Skewness

\[- \frac{p}{(1 - p)^3 \sqrt{\log(1 - p)}} (1 + p + \frac{3p}{\log(1 - p)} + \frac{2p^2}{\log^2(1 - p)}) \]

(Excess) kurtosis

\[- \frac{p}{(1 - p)^4 \sqrt{\log(1 - p)}} \left(1 + 4p + p^2 + \frac{4p(1 + p)}{\log(1 - p)} + \frac{6p^2}{\log^2(1 - p)} + \frac{3p^3}{\log^3(1 - p)} \right) - 3 \]

where

\[A = \left(1 + 4p + p^2 + \frac{4p(1 + p)}{\log(1 - p)} + \frac{6p^2}{\log^2(1 - p)} + \frac{3p^3}{\log^3(1 - p)} \right) \]

Characteristic function

\[\log \left(\frac{1 - pe^{it}}{1 - p} \right) \]

Other comments

The logarithmic distribution has a mode of 1. If \(N \) is a random variable with Poission distribution and \(X_i, i = 1, ... \) is an infinite sequence of iid random variables each distributed \(Log(p) \) then \(Y = \sum_{i=1}^{N} X_i \) has a negative binomial distribution showing that the negative binomial distribution is an example of a compound Poisson distribution.

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “logarithmic”. For details of other supported probability distributions see here.

The negative binomial distribution

[NegativeBinomialDistribution]

The negative binomial distribution describes the probability of \(x \) successes in a sequence of independent experiments each with likelihood of success of \(p \) that arise before there are \(r \) failures. In this interpretation \(r \) is a positive integer, but the distributional definition can also be extended to real values of \(r > 0 \). Note: different texts adopt slightly different definitions, e.g. with support starting at \(x = r \) not \(x = 0 \) and/or with \(p \) denoting probability of failure rather than probability of success.

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Negative binomial distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(X \sim NB(k, p))</td>
</tr>
<tr>
<td>Parameters</td>
<td>(r =) number of failures ((r > 0))</td>
</tr>
<tr>
<td></td>
<td>(p =) probability of success in each experiment ((0 < p < 1))</td>
</tr>
<tr>
<td>Support</td>
<td>(x \in {0,1,2,...})</td>
</tr>
<tr>
<td>Probability mass function</td>
<td>(f(x) = \binom{x + r - 1}{x} p^x(1 - p)^r)</td>
</tr>
</tbody>
</table>

If \(r \) is non-integer then is:
<table>
<thead>
<tr>
<th>Statistics</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative distribution function</td>
<td>$F(x) = 1 - I_p(x + 1, r)$</td>
</tr>
<tr>
<td>Mean</td>
<td>$\frac{pr}{1 - p}$</td>
</tr>
<tr>
<td>Variance</td>
<td>$\frac{(1 - p)^2}{pr}$</td>
</tr>
<tr>
<td>Skewness</td>
<td>$\frac{1 + p}{\sqrt{pr}}$</td>
</tr>
<tr>
<td>(Excess) kurtosis</td>
<td>$\frac{6}{r} + \frac{(1 - p)^2}{pr}$</td>
</tr>
<tr>
<td>Characteristic function</td>
<td>$\left(\frac{1 - p}{1 - pe^{it}}\right)^r$</td>
</tr>
</tbody>
</table>

Other comments

The geometric distribution is the same as the negative binomial distribution with parameter $r = 1$. Its pdf and cdf are therefore:

- PDF: $f(x) = p(1 - p)^x$
- CDF: $F(x) = 1 - (1 - p)^{x+1}$

For the special case where r is an integer the negative binomial distribution is also called the Pascal distribution. The Poisson distribution is also a limiting case of the negative binomial:

$$Poison(\lambda) = \lim_{r \to \infty} NB \left(r, \frac{r}{\lambda + r} \right)$$

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “negative binomial”. For details of other supported probability distributions see here.

The Poisson distribution

[DistributionName]

The Poisson distribution expresses the probability of a given number of events occurring in a fixed interval of time if the events occur with a known average rate and independently of the time since the last event.

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Poisson distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>$X \sim Pois(\lambda)$</td>
</tr>
<tr>
<td>Parameters</td>
<td>$\lambda = \text{event rate (} \lambda > 0\text{)}$</td>
</tr>
<tr>
<td>Support</td>
<td>$x \in {0,1,2,\ldots}$</td>
</tr>
<tr>
<td>Probability mass function</td>
<td>$f(x) = \frac{\lambda^x e^{-\lambda}}{x!}$</td>
</tr>
<tr>
<td>Cumulative distribution function</td>
<td>$F(x) = e^{-\lambda} \sum_{j=0}^{\lambda} \frac{\lambda^j}{j!}$</td>
</tr>
</tbody>
</table>

(can also be expressed using the incomplete gamma function)

Mean

λ

Variance

λ
Skewness $\lambda^{-1/2}$

(Excess) kurtosis λ^{-1}

Characteristic function $e^{i\lambda(t)}$

Other comments
The median is approximately $\text{int}(\lambda + 1/3 - 0.02/\lambda)$.

The mode is $\text{int}(\lambda)$ if λ is not integral. Otherwise the distribution is bi-modal with modes λ and $\lambda - 1$.

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “poisson”. For details of other supported probability distributions see here.

The uniform (discrete) distribution
[UniformDiscreteDistribution]

The uniform (discrete) distribution involves equally probable outcomes that are spaced uniform intervals apart.

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Uniform (discrete) distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>$X \sim U(a, b, h)$</td>
</tr>
</tbody>
</table>
| Parameters | $a = \text{lower limit}$
| | $b = \text{upper limit (}a < b)$
| | $h = \text{step size (}b - a = (n - 1)h$ where n is a positive integer) |
| Support | $x \in \{a, a + h, ..., a + (n - 1)h(= b)\}$ |
| Probability mass function | $f(x) = \frac{1}{n}$ for $x = a, a + h, ..., a + (n - 1)h$ |
| Cumulative distribution function | $F(x) = \left\{
\begin{array}{ll}
0 & \text{for } x < a \\
\text{int}\left(\frac{x-a}{h}+\frac{1}{n}\right) & \text{for } a \leq x < b \\
1 & \text{for } x \geq b \\
\end{array}
\right.$ |
| Mean | $\frac{a + b}{2}$ |
| Variance | $\frac{(b - a)(b - a + 2h)}{12}$ |
| Skewness | 0 |
| (Excess) kurtosis | $\frac{6(n^2 + 1)}{5(n^2 - 1)}$ |
| Characteristic function | $\frac{1}{n}\left(\frac{e^{i\lambda t} - e^{i(b + 1)t}}{1 - e^{it}}\right)$ |
| Other comments | The median of this distribution is the same as its mean. |
Continuous (univariate) distributions

The Beta distribution

The beta distribution describes a distribution in which outcomes are limited to a specific range, the probability density function within this range being characterised by two shape parameters.

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Beta distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>$X \sim \text{Beta}(\alpha, \beta)$</td>
</tr>
<tr>
<td>Parameters</td>
<td>$\alpha = \text{shape parameter (}\alpha > 0\text{)}$</td>
</tr>
<tr>
<td></td>
<td>$\beta = \text{shape parameter (}\beta > 0\text{)}$</td>
</tr>
<tr>
<td>Domain</td>
<td>$0 \leq x \leq 1$</td>
</tr>
<tr>
<td>Probability density function</td>
<td>$f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}$</td>
</tr>
<tr>
<td>Cumulative distribution function</td>
<td>$F(x) = \frac{B_x(\alpha, \beta)}{B(\alpha, \beta)} = I_x(\alpha, \beta)$</td>
</tr>
<tr>
<td>Mean</td>
<td>$\frac{\alpha + \beta}{\alpha \beta}$</td>
</tr>
<tr>
<td>Variance</td>
<td>$\frac{(\alpha + \beta)^2(\alpha + \beta + 1)}{(\alpha + \beta + 2)^2 \alpha \beta}$</td>
</tr>
<tr>
<td>Skewness</td>
<td>$\frac{2(\beta - \alpha) \sqrt{\alpha + \beta + 1}}{(\alpha + \beta + 2) \sqrt{\alpha \beta}}$</td>
</tr>
<tr>
<td>(Excess) kurtosis</td>
<td>$\frac{6((\alpha - \beta)^2(\alpha + \beta + 1) - \alpha \beta (\alpha + \beta + 2))}{\alpha \beta (\alpha + \beta + 2)(\alpha + \beta + 3)}$</td>
</tr>
<tr>
<td>Characteristic function</td>
<td>$\text{\emph{Beta}}1(\alpha; \alpha + \beta; it) = 1 + \sum{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{(it)^k}{k!}$</td>
</tr>
<tr>
<td>Other comments</td>
<td>The beta distribution is also known as a beta distribution of the first kind. Its mode is $\frac{\alpha - 1}{\alpha + \beta - 2}$ for $\alpha > 1, \beta > 1$. There is no simple closed form solution for its median. The beta distribution parameters are sometimes taken to include boundary parameters a, b ($a < b$) in which case its domain is $a \leq x \leq b$, and its pdf and cdf are $f(x) = \frac{(x - a)^{\alpha-1}(b-x)^{\beta-1}}{B(a, \beta)}$ and $F(x) = \ldots$</td>
</tr>
</tbody>
</table>
$B_{z}(\alpha, \beta)$ where $z = \frac{x - a}{b - a}$, its mean is $\frac{ab + \beta a}{\alpha + \beta}$, its mode is $\frac{(\alpha - 1) + (\beta - 1) a}{\alpha + \beta - 2}$ for $\alpha > 1, \beta > 1$ and its variance is $\frac{\alpha \beta (b - a)^2}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$.

If $X \sim \Gamma(\alpha, \theta)$ and $Y \sim \Gamma(\beta, \theta)$ then $\frac{X}{X+Y} \sim Be(\alpha, \beta)$. If $X \sim \text{Beta}(\alpha, \beta)$ then $X/(1-X) \sim \text{BetaPrime}(\alpha, \beta)$ and if $X \sim \text{Beta}\left(\frac{n}{2}, \frac{m}{2}\right)$ then $\frac{m}{n(1-X)} \sim F(n, m)$ (if $n > 0$ and $m > 0$). The k'th order statistic of a sample of size n from the uniform distribution has a beta distribution, $u(k) \sim \text{Beta}(k, n + 1 - k)$.

If $X \sim \text{Beta}(1 + \lambda (m - a)/(b - a), 1 + \lambda (b - m)/(b - a))$ then $a + X(b - a) \sim \text{Pert}(a, b, m, \lambda)$, i.e. the Pert distribution is a special case of the beta distribution.

Its non-central moments are $E(X^r) = \prod_{j=0}^{r-1} \frac{\alpha+j}{\alpha+\beta+j}$.

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “beta”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a DistributionName of “beta4”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The Beta prime distribution

The Beta prime distribution

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Beta prime distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>$X \sim \text{BetaPrime}(\alpha, \beta)$</td>
</tr>
<tr>
<td>Parameters</td>
<td>$\alpha =$ shape parameter ($\alpha > 0$)</td>
</tr>
<tr>
<td></td>
<td>$\beta =$ shape parameter ($\beta > 0$)</td>
</tr>
<tr>
<td>Domain</td>
<td>$x \geq 0$</td>
</tr>
<tr>
<td>Probability density function</td>
<td>$f(x) = \frac{x^{\alpha-1}(1 + x)^{-\alpha-\beta}}{B(\alpha, \beta)}$</td>
</tr>
<tr>
<td>Cumulative distribution</td>
<td>$F(x) = I_{x/(1+x)}(\alpha, \beta)$</td>
</tr>
</tbody>
</table>
The beta prime distribution is also called the inverted beta or the beta distribution of the second kind or the Pearson Type 6 distribution. The mode of the beta prime distribution is \(\frac{\alpha - 1}{\alpha + \beta - 2} \) for \(\alpha > 1, \beta > 1 \). There is no simple closed form expression for its median.

Its non-central moments (for integral \(r \)) are:

\[
E(X^r) = \prod_{j=1}^{k} \frac{\alpha + j - 1}{\beta - i} = \frac{B(\alpha + r)B(\beta - r)}{B(\alpha, \beta)}
\]

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “beta prime”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a DistributionName of “beta prime4”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The Burr distribution

[BurrDistribution]

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Burr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(X \sim Burr(\alpha, \beta, k)) or (X \sim SM(\alpha, \beta, k))</td>
</tr>
<tr>
<td>Parameters</td>
<td>(k =) shape parameter ((k > 0)) (\alpha =) shape parameter ((\alpha > 0)) (\beta =) shape parameter ((\beta > 0))</td>
</tr>
<tr>
<td>Domain</td>
<td>(0 \leq x < +\infty)</td>
</tr>
<tr>
<td>Probability density function</td>
<td>(f(x) = \frac{\alpha \beta k^\alpha x^{\beta - 1}}{(k + x^\beta)^{\alpha + 1}})</td>
</tr>
<tr>
<td>Cumulative distribution function</td>
<td>(F(x) = 1 - \left(\frac{k}{k + x^\beta} \right)^\alpha)</td>
</tr>
</tbody>
</table>
Mean
\[\Gamma\left(\alpha - \frac{1}{\beta}\right) \Gamma\left(1 + \frac{1}{\beta}\right) k^{1/\beta} \]

Variance
\[\left(\Gamma\left(\alpha - \frac{2}{\beta}\right) \Gamma\left(1 + \frac{2}{\beta}\right) - \left(\frac{\Gamma\left(\alpha - \frac{1}{\beta}\right) \Gamma\left(1 + \frac{1}{\beta}\right)}{\Gamma(\alpha)} \right)^2 \right) k^{2/\beta} / \Gamma(\alpha) \]

Other comments
The Burr distribution is also known as the *Burr Type XII* distribution or the *Singh-Maddala* distribution (sometimes also called the generalised log-logistic distribution).

Its non-central moments are:
\[E(X^r) = \Gamma\left(\alpha - \frac{r}{\beta}\right) \Gamma\left(1 + \frac{r}{\beta}\right) k^{r/\beta} / \Gamma(\alpha) \quad r = 1,2, ..., r < \alpha \beta \]

Nematrian web functions
Functions relating to the above distribution may be accessed via the Nematrian web function library by using a `DistributionName` of “burr”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a `DistributionName` of “burr5”, see also including additional shift and scale parameters. For details of other supported probability distributions see [here](#).

The Cauchy distribution
[CauchyDistribution](#)

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Cauchy distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(X \sim \text{Cauchy}(\mu, \sigma))</td>
</tr>
<tr>
<td>Parameters</td>
<td>(\mu = \text{location parameter}) (\sigma = \text{scale parameter (} \sigma > 0)</td>
</tr>
<tr>
<td>Domain</td>
<td>(-\infty < x < +\infty)</td>
</tr>
<tr>
<td>Probability density function</td>
<td>(f(x) = \left(\frac{\pi \sigma}{\pi + \left(\frac{x - \mu}{\sigma} \right)^2} \right)^{-1})</td>
</tr>
<tr>
<td>Cumulative distribution function</td>
<td>(F(x) = \frac{1}{\pi} \arctan \left(\frac{x - \mu}{\sigma} \right) + \frac{1}{2})</td>
</tr>
<tr>
<td>Mean</td>
<td>Does not exist</td>
</tr>
<tr>
<td>Variance</td>
<td>Does not exist</td>
</tr>
</tbody>
</table>
Skewness: Does not exist
(Excess) kurtosis: Does not exist
Characteristic function: \(\exp(\mu t - \sigma |t|) \)

Other comments:
The quantile function of the Cauchy distribution is:

\[Q(p) = \mu + \sigma \tan \pi \left(p - \frac{1}{2} \right) \]

Its median is thus \(\mu \).

The Cauchy distribution is a special case of the stable (more precisely the sum stable) distribution family.

The special case of the Cauchy distribution when \(\mu = 0 \) and \(\sigma = 1 \) is called the standard Cauchy distribution. It coincides with the Student’s \(t \) distribution with one degree of freedom. It has a probability density function of \(f(x; 0, 1) = \frac{1}{\pi(1+x^2)} \).

If \(X \sim N(0,1) \) and \(Y \sim N(0,1) \) are independent random variables then \(\frac{X}{Y} \sim Cauchy(0,1) \) and this can be used to generate random variates.

The Cauchy distribution is also known as the Cauchy-Lorentz or Lorentz distribution (especially amongst physicists).

Nematrian web functions
Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “cauchy”. For details of other supported probability distributions see here.

The Chi-squared distribution

The chi-squared distribution with \(\nu \) degrees of freedom is the distribution of a sum of the squares of \(\nu \) independent standard normal random variables. A consequence is that the sum of independent chi-squared variables is also chi-squared distributed. It is widely used in hypothesis testing, goodness of fit analysis or in constructing confidence intervals. It is a special case of the gamma distribution.

Distribution name: Chi-squared distribution
Chi-squared distribution

<table>
<thead>
<tr>
<th>Common notation</th>
<th>$X \sim \chi^2_\nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>$\nu =$ degrees of freedom (positive integer)</td>
</tr>
<tr>
<td>Domain</td>
<td>$0 \leq x < +\infty$</td>
</tr>
<tr>
<td>Probability density function</td>
<td>$f(x) = \frac{x^{\nu/2-1} \exp\left(-\frac{x}{2}\right)}{2^{\nu/2} \Gamma(\nu/2)}$</td>
</tr>
<tr>
<td>Cumulative distribution function</td>
<td>$F(x) = \frac{\Gamma_{\nu/2}(x/2)}{\Gamma(\nu/2)}$</td>
</tr>
<tr>
<td>Mean</td>
<td>ν</td>
</tr>
<tr>
<td>Variance</td>
<td>2ν</td>
</tr>
<tr>
<td>Skewness</td>
<td>$\frac{2}{\sqrt{\nu}}$</td>
</tr>
<tr>
<td>(Excess) kurtosis</td>
<td>$\frac{12}{\nu}$</td>
</tr>
<tr>
<td>Characteristic function</td>
<td>$(1 - 2it)^{-\nu/2}$</td>
</tr>
</tbody>
</table>

Other comments

- Its median is approximately $\nu \left(1 - \frac{2}{9\nu}\right)^3$. Its mode is $\max(\nu - 2, 0)$. Is also known as the central chi-squared distribution (when there is a need to contrast it with the noncentral chi-squared distribution).

- In the special case of $\nu = 2$ the cumulative distribution function simplifies to $F(x) = 1 - e^{-x^2/2}$.

- As $\nu \to \infty$, $(\chi^2_\nu - \nu)/\sqrt{2\nu} \to N(0,1)$ and $qF(q, \nu) \to \chi^2_q$.

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a `DistributionName` of “chi-squared”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a `DistributionName` of “chi-squared3”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The Dagum distribution

[DagumDistribution]
<table>
<thead>
<tr>
<th>Common notation</th>
<th>$X \sim Dagum(\alpha, \beta, k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>$k = \text{shape parameter } (k > 0)$</td>
</tr>
<tr>
<td></td>
<td>$\alpha = \text{shape parameter } (\alpha > 0)$</td>
</tr>
<tr>
<td></td>
<td>$\beta = \text{scale parameter } (\beta > 0)$</td>
</tr>
<tr>
<td>Domain</td>
<td>$0 \leq x < +\infty$</td>
</tr>
<tr>
<td>Probability density function</td>
<td>$f(x) = \frac{\alpha k}{\beta} \left(\frac{x}{\beta}\right)^{ak-1} \left(1 + \frac{x}{\beta}\right)^{-ak-1}$</td>
</tr>
<tr>
<td>Cumulative distribution function</td>
<td>$F(x) = \frac{x^\alpha}{(\beta^\alpha + x^\alpha)^k}$</td>
</tr>
<tr>
<td>Mean</td>
<td>$\begin{cases} \frac{-\beta}{\alpha} \frac{\Gamma\left(-\frac{1}{\alpha}\right)\Gamma\left(\frac{1}{\alpha} + k\right)}{\Gamma(k)} \alpha > 1 \ \infty \text{ otherwise} \end{cases}$</td>
</tr>
<tr>
<td>Variance</td>
<td>$\begin{cases} \left(-\frac{\beta}{\alpha}\right)^2 (A + B) \alpha > 2 \ \infty \text{ otherwise} \end{cases}$</td>
</tr>
<tr>
<td>Other comments</td>
<td>Also known as the Dagum type 1 distribution. Is used in modelling income distributions. The cdf of a Dagum type 2 distribution adds a point mass at the origin and then follows a Dagum type 1 distribution over the positive halfline.</td>
</tr>
<tr>
<td></td>
<td>Its median is $\beta \left(2^{1/k} - 1\right)^{-1/\alpha}$ and its mode is $\beta \left(\frac{ak-1}{\alpha+1}\right)^{1/\alpha}$.</td>
</tr>
<tr>
<td></td>
<td>Its non-central moments are: $E(X^r) = \Gamma\left(-\frac{r}{\alpha} + 1\right)\Gamma\left(\frac{r}{\alpha} + k\right)\frac{\beta^r}{\Gamma(k)} \quad r = 1, 2, ..., r < \alpha$</td>
</tr>
</tbody>
</table>

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “dagum”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a DistributionName of “dagum4”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The Degenerate distribution

[DegenerateDistribution]
The degenerate distribution characterises a distribution involving a single outcome. It can be viewed as the limiting case of many common distributions in which the scale parameter tends to zero, so the distribution function concentrates onto a single point. It is also called the Dirac delta function.

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Degenerate distribution (can also be viewed as a discrete distribution)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(X \sim \delta_a)</td>
</tr>
<tr>
<td>Parameters</td>
<td>(a =) location parameter</td>
</tr>
<tr>
<td>Domain</td>
<td>(x = a)</td>
</tr>
<tr>
<td>Probability density function</td>
<td>(f(x) = \lim_{\sigma \to 0} \left(\exp \left(-\frac{1}{2} \left(\frac{x - a}{\sigma} \right)^2 \right) \right))</td>
</tr>
<tr>
<td>Cumulative distribution function</td>
<td>(f(x) = \begin{cases} 1, & x > a \ 0, & x < 0 \end{cases})</td>
</tr>
<tr>
<td>Mean</td>
<td>(a)</td>
</tr>
<tr>
<td>Variance</td>
<td>0</td>
</tr>
<tr>
<td>Skewness</td>
<td>Does not exist</td>
</tr>
<tr>
<td>(Excess) kurtosis</td>
<td>Does not exist</td>
</tr>
<tr>
<td>Characteristic function</td>
<td>(e^{ita})</td>
</tr>
</tbody>
</table>

Nematrian web functions

Given its degenerate form, no functions relating to the above distribution are accessible via the Nematrian web function library. For details of other supported probability distributions see here.

The error function distribution

[ErrorFunctionDistribution]

The error function distribution with parameter \(h \) is a special case of the normal distribution, i.e. \(N \left(0, \frac{1}{2h} \right) \).

The exponential distribution

[ExponentialDistribution]

The exponential distribution describes the time between events if these events follow a Poisson process (i.e. a stochastic process in which events occur continuously and independently of one another). It is also called the negative exponential distribution. It is not the same as the exponential family of distributions.
Exponential distribution

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Exponential distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>$X \sim \text{Exp}(\lambda)$</td>
</tr>
<tr>
<td>Parameters</td>
<td>$\lambda = \text{inverse scale (i.e. rate) parameter (} \lambda > 0)$</td>
</tr>
<tr>
<td>Domain</td>
<td>$0 \leq x < +\infty$</td>
</tr>
<tr>
<td>Probability density function</td>
<td>$f(x) = \lambda \exp(-\lambda x)$</td>
</tr>
<tr>
<td>Cumulative distribution function</td>
<td>$F(x) = 1 - \exp(-\lambda x)$</td>
</tr>
<tr>
<td>Mean</td>
<td>$\frac{1}{\lambda}$</td>
</tr>
<tr>
<td>Variance</td>
<td>$\frac{1}{\lambda^2}$</td>
</tr>
<tr>
<td>Skewness</td>
<td>2</td>
</tr>
<tr>
<td>(Excess) kurtosis</td>
<td>6</td>
</tr>
<tr>
<td>Characteristic function</td>
<td>$(1 - i t / \lambda)^{-1}$</td>
</tr>
<tr>
<td>Other comments</td>
<td>The exponential distribution is a special case of the Gamma distribution, as if $X \sim \text{Exp}(\lambda)$ then $X \sim \Gamma(1, 1/\lambda)$. The mode of an exponential distribution is 0. The quantile function, i.e. the inverse cumulative distribution function, is $F^{-1}(p; \lambda) = -\frac{\log(1-p)}{\lambda}$. The non-central moments ($r = 1, 2, 3, \ldots$) are $E(X^r) = \frac{\Gamma(1+r)}{\lambda^r}$. Its median is $\frac{\log 2}{\lambda}$.</td>
</tr>
</tbody>
</table>

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a `DistributionName` of “exponential”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a `DistributionName` of “exponential2”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The F distribution

[FDistribution]
The F distribution is also known as Snedecor’s F or the Fisher-Snedecor distribution. It commonly arises in statistical tests linked to analysis of variance.

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>F distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>$X \sim F(v_1, v_2)$</td>
</tr>
</tbody>
</table>
| Parameters | $v_1 = \text{degrees of freedom (first) (positive integer)}$
| | $v_2 = \text{degrees of freedom (second) (positive integer)}$ |
| Domain | $0 \leq x < +\infty$ |
| Probability density function | $f(x) = \frac{1}{xB(v_1/2, v_2/2)} \left(\frac{(v_1x)^{v_1/2}v_2^{v_2/2}}{(v_1x + v_2)^{v_1+v_2}} \right)$ |
| Cumulative distribution function | $F(x) = \frac{B(v_1x/(v_1x+v_2), v_1/2, v_2/2)}{B(v_1/2, v_2/2)} = I_{v_1x/(v_1x+v_2)}(v_1/2, v_2/2)$ |
| Mean | $\frac{v_1}{v_2 - 2}$ for $v_2 > 2$ |
| Variance | $\frac{2v_2^2(v_1 + v_2 - 2)}{v_1(v_2 - 2)^2(v_2 - 4)}$ for $v_2 > 4$ |
| Skewness | $(2v_1 + v_2 - 2)\sqrt{B(v_2 - 4)}(v_2 - 6)\sqrt{v_1(v_1 + v_2 - 2)}$ for $v_2 > 6$ |
| (Excess) kurtosis | $\frac{12v_1(5v_2 - 22)(v_1 + v_2 - 2) + (v_2 - 4)(v_2 - 4)^2}{v_1(v_2 - 8)(v_1 + v_2 - 2)}$ for $v_2 > 8$ |
| Characteristic function | $\frac{\Gamma \left(\frac{v_1 + v_2}{2} \right)}{\Gamma \left(\frac{v_1}{2} \right)} U \left(\frac{v_1}{2}, 1 - \frac{v_2}{v_1}, -\frac{v_2}{v_1}it \right)$ |
| Where $U(a, b, z)$ is the confluent hypergeometric function of the second kind |

Other comments: The F distribution is a special case of the Pearson type 6 distribution. It is also a particular example of the beta prime distribution.

If $X_1 \sim \chi^2(v_1)$ and $X_2 \sim \chi^2(v_2)$ are independent random variables then

$$\frac{X_1/v_1}{X_2/v_2} \sim F(v_1, v_2)$$

Its mode is $\frac{(v_1-2) v_2}{v_1 v_2+2}$ for $v_1 > 2$. There is no simple closed form for the median.
Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “f”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a DistributionName of “f4”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The Fatigue distribution

The fatigue distribution, also known as the Birnbaum-Saunders distribution or the fatigue life distribution is used extensively to model failure times.

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>(standard) Fatigue distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>$X \sim \text{Birnbaum-Saunders}(\alpha)$</td>
</tr>
<tr>
<td>Parameters</td>
<td>$\alpha =$ shape parameter ($\alpha > 0$)</td>
</tr>
<tr>
<td>Domain</td>
<td>$0 < x < +\infty$</td>
</tr>
<tr>
<td>Probability density function</td>
<td>$f(x) = \frac{\sqrt{x} + \sqrt{1/x}}{2ax} \phi \left(\frac{\sqrt{x} - \sqrt{1/x}}{\alpha} \right)$ where $\phi(x) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{x^2}{2} \right)$</td>
</tr>
<tr>
<td>Cumulative distribution function</td>
<td>$F(x) = N \left(\frac{\sqrt{x} - \sqrt{1/x}}{\alpha} \right)$</td>
</tr>
<tr>
<td>Mean</td>
<td>$1 + \frac{\alpha^2}{2}$</td>
</tr>
<tr>
<td>Variance</td>
<td>$\frac{\alpha^2(4 + 5\alpha^2)}{4}$</td>
</tr>
<tr>
<td>Other comments</td>
<td>Its quantile function, i.e. the inverse of its cdf, is: $F^{-1}(p) = \frac{1}{4} \left(\alpha N^{-1}(p) + \sqrt{4 + \left(\alpha N^{-1}(p) \right)^2} \right)$</td>
</tr>
</tbody>
</table>

Nematrian web functions
Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “fatigue”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a DistributionName of “fatigue3”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The Frechét distribution
[FrechetDistribution]

The Frechét distribution is a special case of the generalised extreme value (GEV) distribution. It characterises the distribution of ‘block maxima’ under certain (relatively restrictive) conditions in situations where the tail index corresponds to fatter tails than arises with the normal distribution.

The gamma distribution
[GammaDistribution]

The gamma distribution is a two-parameter family of continuous probability distributions. Two different parameterisations are in common use, see below, with the \((k, \theta)\) parameterisation being apparently somewhat more common in econometrics and the \((k, \lambda)\) parameterisation being somewhat more common in Bayesian statistics.

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Gamma distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(X \sim \Gamma(k, \theta)) or (\Gamma(\alpha, \lambda))</td>
</tr>
</tbody>
</table>
| Parameters | Has two commonly used parameterisations:
| | \(k = \text{shape parameter} \ (k > 0)\)
| | \(\theta = \text{scale parameter} \ (\theta > 0)\) or \(\lambda = \text{inverse scale} \ (\text{i.e. rate}) \text{ parameter} \ (\theta > 0)\) where \(\lambda = 1/\theta\).
<p>| | Unless otherwise specified the material below assumes the first parameterisation (i.e. using a scale parameter) |
| Domain | (0 \leq x < +\infty) |
| Probability density function |
| | (f(x) = \frac{x^{k-1}e^{-x/\theta}}{\theta^k \Gamma(k)}) |
| Cumulative distribution function |
| | (F(x) = \frac{\Gamma_x/\theta(k)}{\Gamma(k)}) |
| Mean | (k\theta) |</p>
<table>
<thead>
<tr>
<th>Variance</th>
<th>(k \theta^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skewness</td>
<td>(2 / \sqrt{k})</td>
</tr>
<tr>
<td>(Excess) kurtosis</td>
<td>(6 / k)</td>
</tr>
<tr>
<td>Moment generating function</td>
<td>((1 - \theta t)^{-k}) for (t < 1 / \theta)</td>
</tr>
<tr>
<td>Characteristic function</td>
<td>((1 - i \theta t)^{-k})</td>
</tr>
</tbody>
</table>

Other comments

The gamma distribution can also be defined with a location parameter, \(\gamma \), say, in which case its domain is shifted to \(\gamma \leq x < +\infty \).

Its mode is \((k - 1) \theta \) for \(k \geq 1 \).

If \(X \) follows an exponential distribution with rate parameter \(\lambda \) then \(X \sim \Gamma(1, 1 / \lambda) \).

If \(X \) follows a chi-squared distribution, with \(v \) degrees of freedom, i.e. \(X \sim \chi^2(v) \) then \(X \sim \Gamma(v/2, 2) \) and \(cX \sim \Gamma(v/2, 2c) \).

If \(k \) is integral then \(\Gamma(k, \theta) \) is also called the Erlang distribution. It is the distribution of the sum of \(k \) independent exponential variables each with mean \(\theta = 1 / \lambda \). Events that occur independently with some average rate are commonly modelled using a Poisson process. The waiting times between \(k \) occurrences of the event are then Erlang distributed whilst the number of events in a given amount of time is Poisson distributed.

If \(X \) follows a Maxwell-Boltzmann distribution with parameter \(a \) then \(X^2 \sim \Gamma(3/2, \theta = 2a^2) \). If \(X \) follows a skew logistic distribution with parameter \(\theta \) then \(\log(1 + e^{-X}) \sim \Gamma(1, \theta) \).

The gamma distribution is the conjugate prior for the precision (i.e. inverse variance) of a normal distribution and for the exponential distribution.

The gamma distribution has the ‘summation’ property that if \(X_i \sim \Gamma(k_i, \theta) \) for \(i = 1, \ldots, n \) and the \(X_i \) are independent then \(\sum_{i=1}^{n} X_i \sim \Gamma(\sum_{i=1}^{n} k_i, \theta) \).

Its non-central moments \((r = 1, 2, 3, \ldots) \) are \(E(X^r) = \frac{\Gamma(k+r)}{\Gamma(k)} \theta^r \).

There is in general no simple closed form for its median.

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “gamma”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a DistributionName of “gamma3”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.
The generalised extreme value distribution

\[\text{GEVDistribution} \]

The generalised extreme value (or generalized extreme value) distribution characterises the behaviour of ‘block maxima’ under certain (somewhat restrictive) regularity conditions. See also Nematrian’s webpages about Extreme Value Theory (EVT).

Distribution name

Generalised extreme value (GEV) distribution (for maxima)

Common notation

\[X \sim \text{GEV}(\xi, \mu, \sigma) \]

Parameters

- \(\xi \): shape parameter
- \(\mu \): location parameter
- \(\sigma \): scale parameter

Domain

\[
1 + \left(\frac{x - \mu}{\sigma} \right) \xi > 0 \quad \xi \neq 0 \\
-\infty < x < \infty \quad \xi = 0
\]

Probability density function

\[
f(x) = \frac{1}{\sigma} Q(x)^{\xi+1} e^{-Q(x)}
\]

where

\[
Q(x) = \begin{cases}
1 + \xi \left(\frac{x - \mu}{\sigma} \right)^{-1/\xi} & \xi \neq 0 \\
\exp \left(-\frac{x - \mu}{\sigma} \right) & \xi = 0
\end{cases}
\]

Cumulative distribution function

\[
F(x) = e^{-Q(x)}
\]

Mean

\[
\begin{cases}
\mu + \sigma \frac{\Gamma(1 - \xi) - 1}{\xi} & \text{if } \xi \neq 0, \xi < 1 \\
\mu + \sigma \gamma & \text{if } \xi = 0 \\
\infty & \text{if } \xi \geq 1
\end{cases}
\]

where \(\gamma \) is Euler’s constant, i.e. \(\lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right) \)

Variance

\[
\begin{cases}
\sigma^2 \frac{g_2 - g_1^2}{\xi^2} & \text{if } \xi \neq 0, \xi < 1/2 \\
\sigma^2 \pi^2 & \text{if } \xi = 0 \\
\frac{6}{\xi^2} & \text{if } \xi \geq 1/2
\end{cases}
\]

Where \(g_k = \Gamma(1 - k\xi) \)
Skewness

\[
\begin{cases}
g_3 - 3g_1g_2 + 2g_1^3 & \text{if } \xi \neq 0 \\
\frac{12\sqrt{6}\zeta(3)}{\pi^3} & \text{if } \xi = 0
\end{cases}
\]

where \(\zeta(x)\) is the Riemann zeta function, i.e. \(\sum_{k=1}^{\infty} \frac{1}{k^x}\).

(Excess) kurtosis

\[
\begin{cases}
g_4 - 4g_1g_3 + 6g_2g_1^2 - 3g_1^4 & \text{if } \xi \neq 0 \\
\frac{12}{5} & \text{if } \xi = 0
\end{cases}
\]

Other comments

\(\xi\) defines the tail behaviour of the distribution. The sub-families defined by \(\xi = 0\) (Type I), \(\xi > 0\) (Type II) and \(\xi < 0\) (Type III) correspond to the Gumbel, Frechét and Weibull families respectively.

An important special case when analysing threshold exceedances involves \(\mu = 0\) (and normally \(\xi > 0\)) and this special case may be referred to as \(GEV(\xi, \sigma)\).

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “gev”. For details of other supported probability distributions see here.

The generalised gamma distribution

[GeneralisedGammaDistribution]

The generalised gamma (or generalized gamma) distribution is a generalisation of the gamma distribution that includes several of the parametric distributions typically used in survival analysis.

<table>
<thead>
<tr>
<th>Probability density function</th>
<th>Cumulative distribution function</th>
<th>Quantile-quantile plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>generalised gamma (k=1.5), (\alpha=2), (\beta=1.2)</td>
<td>generalised gamma (k=1.5), (\alpha=2), (\beta=1.2)</td>
<td>Expected (standardised) generalised gamma (k=1.5), (\alpha=2), (\beta=1.2)</td>
</tr>
</tbody>
</table>

Distribution name	Generalised gamma distribution
Common notation	\(X \sim \text{GeneralisedGamma}(k, \alpha, \beta)\)
Parameters	\(k = \text{shape parameter } (k > 0)\)
\(\alpha = \text{shape parameter } (\alpha > 0)\)	
\(\beta = \text{scale parameter } (\beta > 0)\)	
Domain | \(0 \leq x < +\infty\)
Probability density function

\[f(x) = \frac{k}{\beta \Gamma(\alpha)} \left(\frac{x}{\beta} \right)^{k\alpha - 1} \exp\left(-\left(\frac{x}{\beta}\right)^k\right) \]

Cumulative distribution function

\[F(x) = \frac{\Gamma(\alpha)}{\Gamma(\alpha)} \left(\frac{x}{\beta}\right)^{\frac{1}{\beta}} \]

Mean

\[\beta \Gamma\left(\alpha + \frac{1}{k}\right) \]

Variance

\[\beta^2 \frac{\Gamma\left(\alpha + \frac{2}{k}\right) \Gamma(\alpha) - \Gamma\left(\alpha + \frac{1}{k}\right)^2}{\Gamma(\alpha)^2} \]

Skewness

\[\frac{\Gamma\left(\alpha + \frac{3}{k}\right) \Gamma(\alpha)^2 - 3\Gamma\left(\alpha + \frac{2}{k}\right) \Gamma\left(\alpha + \frac{1}{k}\right) \Gamma(\alpha) + 2\Gamma\left(\alpha + \frac{1}{k}\right)^3}{\left(\Gamma\left(\alpha + \frac{2}{k}\right) \Gamma(\alpha) - \Gamma\left(\alpha + \frac{1}{k}\right)^2\right)^{3/2}} \]

(Excess) kurtosis

\[\frac{A + B + C + D}{\left(\Gamma\left(\alpha + \frac{2}{k}\right) \Gamma(\alpha) - \Gamma\left(\alpha + \frac{1}{k}\right)^2\right)^2} - 3 \]

where:

\[A = \Gamma\left(\alpha + \frac{4}{k}\right) \Gamma(\alpha)^3 \]

\[B = -4\Gamma\left(\alpha + \frac{3}{k}\right) \Gamma\left(\alpha + \frac{1}{k}\right) \Gamma(\alpha)^2 \]

\[C = 6\Gamma\left(\alpha + \frac{2}{k}\right) \Gamma\left(\alpha + \frac{1}{k}\right)^2 \Gamma(\alpha) \]

\[D = -3\Gamma\left(\alpha + \frac{1}{k}\right)^4 \]

Other comments

Its non-central moments are:

\[E(X^r) = \frac{\beta^r \Gamma\left(\alpha + \frac{r}{k}\right)}{\Gamma(\alpha)} \]

The **Weibull** distribution is a special case with \(\alpha = 1\). The **gamma** distribution is a special case with \(k = 1\).

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a `DistributionName` of “generalised gamma”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a `DistributionName` of “generalised gamma4”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The generalised inverse Gaussian distribution

[GeneralisedInverseGaussianDistribution]

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Generalised inverse Gaussian distribution (GIG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(X \sim GIG(\lambda, \xi, \psi))</td>
</tr>
<tr>
<td>Parameters</td>
<td>(\lambda = \text{parameter (}\lambda > 0))</td>
</tr>
<tr>
<td></td>
<td>(\xi = \text{parameter (}\xi \geq 0))</td>
</tr>
<tr>
<td></td>
<td>(\psi = \text{parameter (}\psi \geq 0))</td>
</tr>
<tr>
<td>Domain</td>
<td>(0 < x < +\infty)</td>
</tr>
<tr>
<td>Probability density function</td>
<td>[f(x) = \left(\frac{\sqrt{\psi/\xi}}{2K_\lambda(\sqrt{\xi\psi})}\right)^\lambda x^{\lambda-1} \exp\left(-\frac{1}{2} \left(\frac{x}{\sqrt{\xi\psi}} + \psi\right)\right)] where (K_\lambda(x)) is the modified Bessel function of the third kind with index (\lambda).</td>
</tr>
<tr>
<td>Mean</td>
<td>[\sqrt{\xi} K_{p+1} \left(\frac{\sqrt{\xi\psi}}{\sqrt{\psi}}\right)]</td>
</tr>
<tr>
<td>Variance</td>
<td>[\left(\frac{\xi}{\psi}\right) \left(\frac{K_{p+2} \left(\sqrt{\xi\psi}\right)}{K_p \left(\sqrt{\xi\psi}\right)} - \left(\frac{K_{p+1} \left(\sqrt{\xi\psi}\right)}{K_p \left(\sqrt{\xi\psi}\right)}\right)^2 \right)]</td>
</tr>
<tr>
<td>Characteristic function</td>
<td>[\left(\frac{\psi}{\psi - 2it} \right)^{p/2} K_p \left(\sqrt{\xi \left(\psi - 2it\right)}\right)]</td>
</tr>
<tr>
<td>Other comments</td>
<td>When (\xi > 0) and (\psi > 0) the non-central moments are: [E(X^r) = \left(\frac{\xi}{\psi}\right)^{r/2} \frac{K_{\lambda+r} \left(\sqrt{\xi\psi}\right)}{K_\lambda \left(\sqrt{\xi\psi}\right)}] Some commentators use GIG to refer to the generalised integer gamma distribution (which is not the same as the generalised inverse Gaussian distribution).</td>
</tr>
</tbody>
</table>

Nematrian web functions

This distribution is not currently supported within the Nematrian web function library. For details of other supported probability distributions see [here](#).

The generalised Pareto distribution

The generalised Pareto distribution (generalized Pareto distribution) arises in Extreme Value Theory (EVT). If the relevant regularity conditions are satisfied then the tail of a distribution (above some suitably high threshold), i.e. the distribution of ‘threshold exceedances’, tends to a generalised Pareto distribution.

Care is needed with EVT because what we are in effect doing with it is to extrapolate into the tail of the distribution. Extrapolation is an intrinsically imprecise and subjective mathematical activity. We can in effect view the regularity conditions that need to be satisfied if EVT applies as corresponding to requiring that this extrapolation is done in a particular manner.
Generalised Pareto distribution (GPD)

Common notation

\[X \sim GPD(\xi, \mu, \sigma) \]

Parameters

- \(\xi \): shape parameter
- \(\mu \): location parameter
- \(\sigma \): scale parameter (\(\sigma > 0 \))

Domain

- \(\mu \leq x < +\infty \) if \(\xi \geq 0 \)
- \(\mu \leq x \leq \mu - \frac{\sigma}{\xi} \) if \(\xi < 0 \)

Probability density function

\[
f(x) = \begin{cases}
\frac{1}{\sigma} (1 + \xi z)^{-1-1/\xi} & \xi \neq 0 \\
\frac{1}{\sigma} \exp(-z) & \xi = 0
\end{cases}
\]

where

\[
z = \frac{x - \mu}{\sigma}
\]

Cumulative distribution function

\[
F(x) = \begin{cases}
\frac{\sigma}{\xi} (1 + \xi z)^{-1} & \xi \neq 0 \\
1 - \exp(-z) & \xi = 0
\end{cases}
\]

Mean

\[
\mu + \frac{\sigma}{1 - \xi} \quad \xi < 1
\]

Variance

\[
\sigma^2 \frac{1 - 2\xi}{(1 - 2\xi)(1 - \xi)^2} \quad \xi < \frac{1}{2}
\]

Skewness

\[
\frac{2(1 + \xi)\sqrt{1 - 2\xi}}{1 - 3\xi} \quad \xi < \frac{1}{3}
\]

(Excess) kurtosis

\[
\frac{6(1 + \xi - 6\xi^2 - 2\xi^3)}{(1 - 3\xi)(1 - 4\xi)} \quad \xi < \frac{1}{4}
\]

Other comments

If \(X \) is uniformly distributed, \(X \sim U(0,1) \) then the variable \(Y = \mu + \sigma(X^{-\xi} - 1) \sim GPD(\mu, \sigma, \xi) \).

The mean excess function for a GPD, i.e. \(e(u) = E(X - u|X > u) \) takes a particularly simple form which is linear in \(\xi \), i.e.

\[
e(u) = \frac{\sigma}{1 - \xi} + \frac{\xi(u - \mu)}{1 - \xi}
\]

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a `DistributionName` of “generalised pareto”. For details of other supported probability distributions see [here](#).
The Gumbel distribution

[\text{GumbelDistribution}]

The Gumbel distribution is a special case of the \textit{generalised extreme value} distribution. It characterises the distribution of ‘block maxima’ as per \textit{Extreme Value Theory} (EVT) under certain (relatively restrictive) conditions.

The hyperbolic secant distribution

[\text{Nematrian website page: HyperbolicSecantDistribution, © Nematrian 2015}]

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Hyperbolic secant distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(X \sim \text{Sech}(\mu, \sigma))</td>
</tr>
<tr>
<td>Parameters</td>
<td>(\sigma =) scale parameter ((\sigma > 0)) (\mu =) location parameter</td>
</tr>
<tr>
<td>Domain</td>
<td>(-\infty < x < +\infty)</td>
</tr>
<tr>
<td>Probability density function</td>
<td>(f(x) = \frac{\text{sech} \left(\frac{\pi}{2} z \right)}{2\sigma}) where (z = \frac{x - \mu}{\sigma})</td>
</tr>
<tr>
<td>Cumulative distribution function</td>
<td>(F(x) = \frac{2}{\pi} \arctan \left(\exp \left(\frac{\pi}{2} z \right) \right))</td>
</tr>
<tr>
<td>Mean</td>
<td>(\mu)</td>
</tr>
<tr>
<td>Variance</td>
<td>(\sigma^2)</td>
</tr>
<tr>
<td>Skewness</td>
<td>0</td>
</tr>
<tr>
<td>(Excess) kurtosis</td>
<td>2</td>
</tr>
<tr>
<td>Characteristic function</td>
<td>(e^{-it\mu} \text{sech}(\sigma t))</td>
</tr>
</tbody>
</table>

Nematrian web functions

Functions relating to the above distribution may be accessed via the \textit{Nematrian web function library} by using a \textit{DistributionName} of “hyperbolic secant”. For details of other supported probability distributions see \textit{here}.
The inverse gamma distribution

The inverse gamma distribution describes the distribution of the reciprocal of a variable distributed according to the gamma distribution.

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Inverse gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td></td>
</tr>
</tbody>
</table>
| Parameters | \(\alpha\) = shape parameter (\(\alpha > 0\))
\(\beta\) = scale parameter (\(\beta > 0\)) |
| Domain | \(0 < x < +\infty\) |
| Probability density function | \(f(x) = \frac{\exp(-\frac{\beta}{x})}{\beta \Gamma(\alpha)(x/\beta)^{\alpha+1}}\) |
| Cumulative distribution function | \(F(x) = 1 - \frac{\Gamma(\alpha)}{\Gamma(\alpha)(x/\beta)^{\alpha}}\) |
| Mean | \(\frac{\beta}{\alpha - 1}\) for \(\alpha > 1\) |
| Variance | \(\frac{\beta^2}{(\alpha - 1)^2(\alpha - 2)}\) for \(\alpha > 2\) |
| Skewness | \(\frac{4\sqrt{\alpha - 2}}{\alpha - 3}\) for \(\alpha > 3\) |
| (Excess) kurtosis | \(\frac{30\alpha - 66}{(\alpha - 3)(\alpha - 4)}\) for \(\alpha > 4\) |
| Characteristic function | \(\frac{2(-i\beta t)^{\alpha/2}}{\Gamma(\alpha)}K_\alpha(2\sqrt{-i\beta t})\) |
| Other comments | Also called the log Pearson type 5 distribution.
Its mode is \(\beta/(\alpha + 1)\) |

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “inverse gamma”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a DistributionName of “inverse gamma3”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.
The inverse Gaussian distribution

[InverseGaussianDistribution]

While the Gaussian (i.e. normal) distribution describes a Brownian motion’s level at a fixed time, the inverse Gaussian distribution describes the distribution of time a Brownian motion starting at 0 with positive drift takes to reach a fixed positive level.

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Inverse Gaussian distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>$X \sim IG(\lambda, \mu)$</td>
</tr>
</tbody>
</table>
| Parameters | $\lambda = \text{parameter (} \lambda > 0\text{)}$
 | $\mu = \text{parameter (} \mu > 0\text{)}$ |
| Domain | $0 < x < +\infty$ |
| Probability density function |
| $f(x) = \frac{\lambda}{\sqrt{2\pi x^3}} \exp \left(-\frac{\lambda(x - \mu)^2}{2\mu^2x}\right)$ |
| Cumulative distribution function |
| $F(x) = N \left(\frac{1}{\sqrt{x} \mu} - 1 \right) + N \left(-\frac{1}{\sqrt{x} \mu} + 1 \right) \exp \left(\frac{2\lambda}{\mu} \right)$ |
| Mean | μ |
| Variance | μ^3/λ |
| Skewness | $3 \left(\frac{\mu}{\lambda} \right)^{1/2}$ |
| (Excess) kurtosis | $\frac{15\mu}{\lambda}$ |
| Characteristic function |
| $\exp \left(\frac{\lambda}{\mu} \left(1 - \sqrt{1 - \frac{2\mu^2it}{\lambda}} \right) \right)$ |

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “inverse gaussian”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a DistributionName of “inverse gaussian3”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.
The Johnson SU distribution

\[JohnsonSUDistribution \]

Distribution name	Johnson SU distribution
Common notation | \(X \sim JohnsonSU(\gamma, \delta, \lambda, \xi) \) or \(X \sim S_{U}(\gamma, \delta, \lambda, \xi) \)
Parameters | \(\gamma \) = shape parameter
 | \(\delta \) = shape parameter (\(\delta > 0 \))
 | \(\lambda \) = location parameter
 | \(\xi \) = scale parameter (\(\xi > 0 \))
Domain | \(-\infty < x < +\infty \)
Probability density function | \[
 f(x) = \frac{\delta \exp \left(-\frac{1}{2} (\gamma + \delta \sinh^{-1} z)^2 \right)}{\xi \sqrt{2\pi z^2 + 1}}
\]
where \(z = \frac{x - \lambda}{\xi} \)
Note \(\sinh^{-1} z = \log(z + \sqrt{z^2 + 1}) \)
Cumulative distribution function | \(F(x) = N(\gamma + \delta \sinh^{-1} z) \)
Mean | \(\lambda - \xi \sqrt{w} \sinh \Omega \)
where \(w = \exp(\delta^{-2}) \) and \(\Omega = \gamma / \delta \)
Variance | \(\frac{\xi^2}{2}(w - 1)(w \cosh(2\Omega) + 1) \)
Skewness | \[
 \frac{-\xi^3 \sqrt{w}(w - 1)^2(w(w+2) \sinh(3\Omega) + 3 \sinh \Omega)}{4\sigma^3}
\]
where \(\sigma = \sqrt{\frac{\xi^2}{2}(w - 1)(w \cosh(2\Omega) + 1)} \)
(Excess) kurtosis | \[
 \frac{\xi^4(w - 1)^2(A + B + C) - 3}{8\sigma^4}
\]
where \[
 A = w^2(w^4 + 2w^3 + 3w^2 - 3) \cosh(4\Omega)
 B = 4w^2(w + 2) \cosh(2\Omega)
 C = 3(2w + 1)
\]

Nematrian web functions
Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “johnsonsu”. For details of other supported probability distributions see here.

The Kumaraswamy distribution

[KumaraswamyDistribution]

The Kumaraswamy distribution describes a distribution in which outcomes are limited to a specific range, the probability density function within this range being characterised by two shape parameters. It is similar to the beta distribution but possibly easier to use because it has simpler analytical expressions for its probability density function and cumulative distribution function.

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Kumaraswamy distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(X \sim \text{Kumaraswamy}(\alpha, \beta))</td>
</tr>
</tbody>
</table>
| Parameters | \(\alpha = \text{shape parameter } (\alpha > 0) \)
| | \(\beta = \text{shape parameter } (\beta > 0) \) |
| Domain | \(0 \leq x \leq 1 \) |
| Probability density function | \(f(x) = \alpha \beta x^{\alpha-1} (1 - x^\alpha)^{\beta-1} \) |
| Cumulative distribution function | \(F(x) = 1 - (1 - x^\alpha)^\beta \) |
| Mean | \(\beta B \left(1 + \frac{1}{\alpha}, \beta \right) \) |
| Variance | \(\left(\beta B \left(1 + \frac{2}{\alpha}, \beta \right) - \beta^2 B \left(1 + \frac{1}{\alpha}, \beta \right)^2 \right) \) |
| Other comments | A standard Kumaraswamy distribution has \(\alpha = 0 \) and \(\beta = 1 \). Its non-central moments are given by:
| | \(E(X^r) = \frac{\beta \Gamma(1 + r/\alpha) \Gamma(\beta)}{\Gamma(1 + \beta + r/\alpha)} = \beta B \left(1 + \frac{r}{\alpha}, \beta \right) \)
| | and its median is \(\left(1 - 2^{-1/\beta} \right)^{1/\alpha} \) and its mode is \(\left(\frac{\alpha-1}{\alpha \beta - 1} \right)^{1/\alpha} \) (for \(\alpha \geq 1, \beta \geq 1, (\alpha, \beta) \neq (1,1) \)). |

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “kumaraswamy”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a
The Laplace distribution

The Laplace distribution is akin to two exponential distributions spliced together.

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Laplace distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(Y \sim \text{Laplace}(\mu, b))</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>(\mu) = location parameter</td>
<td></td>
</tr>
<tr>
<td>(b) = scale parameter ((b > 0))</td>
<td></td>
</tr>
<tr>
<td>Domain</td>
<td>(-\infty < x < +\infty)</td>
</tr>
<tr>
<td>Probability density function</td>
<td></td>
</tr>
<tr>
<td>(f(x) = \frac{1}{2b} \exp\left(-\frac{</td>
<td>x - \mu</td>
</tr>
<tr>
<td>Cumulative distribution function</td>
<td></td>
</tr>
</tbody>
</table>
| \(F(x) = \begin{cases}
\frac{1}{2} \exp\left(-\frac{x - \mu}{b} \right) & x \leq \mu \\
1 - \frac{1}{2} \exp\left(-\frac{x - \mu}{b} \right) & x > \mu
\end{cases} \) |
| Mean | \(\mu \) |
| Variance | \(2b^2 \) |
| Skewness | 0 |
| (Excess) kurtosis | 3 |
| Characteristic function |
| \(\frac{e^{\mu t}}{1 + b^2 t^2} \) |
| Other comments |
| The median and mode are \(\mu \). The inverse cdf (i.e. quantile) function is \(F^{-1}(p) = \mu - b \text{ sgn} \left(p - \frac{1}{2} \right) \log \left(1 - 2 \left| p - \frac{1}{2} \right| \right) \). |
| If \(X \sim U \left(-\frac{1}{2}, \frac{1}{2} \right) \) and \(Y = \mu - b \text{ sgn}(X) \log(1 - 2|X|) \) then \(Y \sim \text{Laplace}(\mu, b) \). |
| It is sometimes referred to as the double exponential distribution (but this term is also apparently also used sometimes of the Gumbel distribution) |

Nematrian web functions
Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “laplace”. For details of other supported probability distributions see here.

The Lévy distribution

The time of hitting a single point \(\alpha \) (different from the starting point of 0) of a Brownian motion without a mean drift follows the Lévy distribution with \(\sigma = \alpha^2 \). With a mean drift it follows an inverse Gaussian meaning that the Lévy distribution is a special case of the inverse Gaussian distribution.

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Lévy distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(X \sim \text{Levy}(\sigma))</td>
</tr>
<tr>
<td>Parameters</td>
<td>(\sigma = \text{scale parameter (} \sigma > 0))</td>
</tr>
<tr>
<td>Domain</td>
<td>(0 < x < +\infty)</td>
</tr>
</tbody>
</table>

Probability density function

\[
f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(\frac{-\sigma^2}{2x}\right)
\]

Cumulative distribution function

\[
F(x) = 2 - 2N\left(\frac{\sigma}{\sqrt{x}}\right)
\]

Mean

\(\infty \)

Variance

\(\infty \)

Skewness

undefined

(Excess) kurtosis

undefined

Characteristic function

\[e^{-\sqrt{2} \sigma t}\]

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “levy”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a DistributionName of “levy2”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The logistic distribution
The logistic distribution has a similar shape to the normal distribution but has heavier tails.

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Logistic distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>$X \sim \text{Logistic}(\mu, s)$</td>
</tr>
</tbody>
</table>
| Parameters | $\mu = \text{location parameter}$
| | $s = \text{scale parameter (} \sigma > 0 \text{)}$ |
| Domain | $-\infty < x < +\infty$ |
| Probability density function |
| | $f(x) = \frac{\exp(-z)}{s(1 + \exp(-z))^2}$
| | where $z = \frac{x - \mu}{s}$ |
| Cumulative distribution function |
| | $F(x) = \frac{1}{1 + \exp(-z)}$ |
| Mean | μ |
| Variance | $\frac{\pi^2 s^2}{3}$ |
| Skewness | 0 |
| (Excess) kurtosis | $\frac{6}{5}$ |
| Characteristic function |
| | $e^{\mu \iota \pi s} \sinh(\pi s \iota)$ |
| Other comments | The logistic distribution is sometimes called the sech-square(d) distribution because its pdf can also be expressed in terms of the hyperbolic secan function:
| | $f(x) = \frac{\exp(-z)}{\sigma(1 + \exp(-z))^2} = \frac{1}{4\sigma^2} \text{sech}^2 \left(\frac{z}{2} \right)$
| | It should not then be confused with the hyperbolic secant distribution. |

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “logistic”. For details of other supported probability distributions see here.
The log-logistic distribution

\[\text{LogLogisticDistribution} \]

- **Distribution name**: Log-logistic distribution
- **Common notation**: \(X \sim LL(\alpha, \beta) \)
- **Parameters**
 - \(\alpha = \) scale parameter \((\alpha > 0) \)
 - \(\beta = \) shape parameter \((\beta > 0) \)
- **Domain**: \(0 \leq x < +\infty \)
- **Probability density function**
 \[f(x) = \frac{\beta \alpha^{-\beta}}{\left(1 + \frac{x}{\alpha}\right)^{\beta+1}} \]
- **Cumulative distribution function**
 \[F(x) = \frac{1}{1 + \left(\frac{x}{\alpha}\right)^{-\beta}} \]
- **Mean**: \(\frac{\alpha b \csc(b)}{\beta} \) if \(\beta > 1 \)
 where \(b = \frac{\pi}{\beta} \) and \(\csc x = 1/\sin x \) is the cosecant function
- **Variance**
 \[\alpha^2 \left(2b \csc(2b) - b^2 \csc^2 b\right) \] if \(\beta > 2 \)
- **Other comments**: Is also called the Fisk distribution. Its non-central moments are (if \(k < \beta \)):
 \[E(X^k) = \alpha^k B(1-k/\beta, 1+k/\beta) = \frac{\alpha^k kb}{\sin(kb)} \]

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a **DistributionName** of “loglogistic”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a **DistributionName** of “loglogistic3”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The lognormal distribution

\[\text{LognormalDistribution} \]
Lognormal distribution

Common notation

\[X \sim \log N(\mu, \sigma^2) \]

Parameters

- \(\sigma \) = scale parameter (\(\sigma > 0 \))
- \(\mu \) = location parameter

Domain

\(0 < x < +\infty \)

Probability density function

\[f(x) = \frac{1}{x \sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{\log x - \mu}{\sigma} \right)^2 \right) \]

Cumulative distribution function

\[F(x) = \frac{1}{2} + \frac{1}{2} \text{erf} \left(\frac{\log x - \mu}{\sqrt{2} \sigma} \right) \]

Mean

\(e^{\mu + \sigma^2/2} \)

Variance

\(\left(e^{\sigma^2} - 1 \right) e^{2\mu + \sigma^2} \)

Skewness

\(\left(e^{(\sigma^2)} + 2 \right) \sqrt{e^{(\sigma^2)} - 1} \)

(Excess) kurtosis

\(e^{4\sigma^2} + 2e^{3\sigma^2} + 3e^{2\sigma^2} - 6 \)

Characteristic function

No simple expression that is not divergent

Other comments

The median of a lognormal distribution is \(e^\mu \) and its mode is \(e^{\mu - \sigma^2} \).

The truncated moments of \(\log N(\mu, \sigma^2) \) are:

\[
\int_L^U x^k f(x) \, dx = e^{k\mu + k^2\sigma^2/2} \left(\frac{\log U - \mu}{\sigma} - k\sigma \right) \left(\frac{\log L - \mu}{\sigma} - k\sigma \right) - N \left(\frac{\log U - \mu}{\sigma} - k\sigma \right)
\]

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a `DistributionName` of “lognormal”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a `DistributionName` of “lognormal4”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The Nakagami distribution

[LognormalDistribution]
Nakagami distribution

Common notation

\[X \sim \text{Nakagami}(m, \omega) \]

Parameters

- \(m = \text{parameter} \ (m \geq 1/2) \)
- \(\omega = \text{parameter} \ (\omega > 0) \)

Domain

\(0 \leq x < +\infty \)

Probability density function

\[f(x) = \frac{2m^m}{\Gamma(m)\omega^m}x^{2m-1} \exp\left(-\frac{m}{\omega}x^2\right) \]

Cumulative distribution function

\[F(x) = \frac{\Gamma_{mx^2/\omega}(m)}{\Gamma(m)} \]

Mean

\[\frac{\Gamma\left(m + \frac{1}{2}\right)}{\Gamma(m)} \left(\frac{\omega}{m}\right)^{1/2} \]

Variance

\[\omega \left(1 - \frac{1}{m} \left(\frac{\Gamma\left(m + \frac{1}{2}\right)}{\Gamma(m)}\right)^2\right) \]

Other comments

Its median is \(\sqrt{\omega} \) and its mode is \(\frac{1}{\sqrt{2}} \left(\frac{2m-1}{m}\right)^{1/2} \).

If \(X \sim \Gamma(k, \theta) \) then \(Y = \sqrt{X} \sim \text{Nakagami}(k, k\theta) \)

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a **DistributionName** of “nakagami”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a **DistributionName** of “nakagami3”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The non-central chi-squared distribution

[NoncentralChiSquaredDistribution]

Distribution name

Non-central chi-squared distribution

Common notation

\[X \sim \chi^2(v, \lambda) \]

Parameters

- \(v = \text{degrees of freedom} \ (\text{positive integer}) \)
- \(\lambda = \text{non-centrality parameter} \ (\lambda \geq 0) \)

Domain

\(0 \leq x < +\infty \)
Probability density function
\[
f(x) = \frac{x^{\nu/2-1} \exp\left(-\frac{x}{2}\right)}{2^{\nu/2} \Gamma(\nu/2)} \text{ } \text{ } {}_0F_1\left(k/2; \lambda x/4\right)
\]
Cumulative distribution function
\[
F(x) = 1 - Q_{\nu/2}(\sqrt{\lambda}, \sqrt{x})
\]
where \(Q_a(a, b)\) is the Marcum-Q function.

Mean \(\nu + \lambda\)
Variance \(2(\nu + 2\lambda)\)
Skewness \(\frac{2\sqrt{2}(\nu + 3\lambda)}{(\nu + 2\lambda)^{3/2}} \frac{8}{\sqrt{\nu}}\)
(Excess) kurtosis \(\frac{12(\nu + 4\lambda)}{(\nu + 2\lambda)^2}\)

Other comments
The non-central chi-squared distribution with \(\nu\) degrees of freedom and non-centrality parameter \(\lambda\) is the distribution of the sum of the squares of \(\nu\) independent normal distributions each with unit standard deviation but with non-zero means \(\mu_i\) where \(\lambda = \sum_{i=1}^{\nu} \mu_i^2\). The (standard) chi-squared distribution is a special case of it with \(\lambda = 0\).

Nematrian web functions

This distribution is not currently supported within the Nematrian web function library. For details of other supported probability distributions see here.

The non-central t distribution

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>(Standard) non-central t distribution (NCT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(X \sim \text{NCT}(\nu, d))</td>
</tr>
<tr>
<td>Parameters</td>
<td>(\nu = \text{degrees of freedom} (\nu > 0, \text{usually } \nu\text{ is an integer although in some situations a non-integral } \nu\text{ can arise})) (b = \text{non-centrality parameter})</td>
</tr>
<tr>
<td>Domain</td>
<td>(-\infty < x < +\infty)</td>
</tr>
</tbody>
</table>
Probability density function

\[f(x) = \begin{cases} \frac{u}{x} \left(F_{u+2,b}(x \sqrt{1 + 2/v}) - F_{u,b}(x) \right) & \text{if } x \neq 0 \\ \frac{\Gamma((v + 1)/2)}{\sqrt{\pi v} \Gamma(v/2)} \exp \left(-\frac{b^2}{2} \right) & \text{if } x = 0 \end{cases} \]

where \(F_{u,b}(x) \) is the NCT cumulative distribution function

Cumulative distribution function

\[F_{u,b}(x) = \begin{cases} Q_{u,b}(x) & \text{if } x \geq 0 \\ 1 - Q_{u,-b}(-x) & \text{if } x < 0 \end{cases} \]

where

\[Q_{u,d}(x) = N(-b) + \sum_{j=0}^{\infty} \left(p_j I_y \left(j + 1, \frac{v}{2} \right) + q_j I_y \left(j + 1, \frac{v}{2} \right) \right) \]

\[y = \frac{x^2}{x^2 + v} \]

\[p_j = \frac{1}{j!} \left(\frac{b^2}{2} \right)^j \exp \left(-\frac{b^2}{2} \right) \]

\[q_j = \frac{\mu}{\sqrt{2} \Gamma \left(j + \frac{3}{2} \right)} \left(\frac{b^2}{2} \right)^j \exp \left(-\frac{b^2}{2} \right) \]

Mean

\[b \frac{\sqrt{v} \Gamma \left(\frac{v-1}{2} \right)}{\sqrt{2} \Gamma \left(\frac{v}{2} \right)} \quad \text{if } v > 1 \]

Variance

\[\frac{v(1 + b^2)}{v - 2} - \frac{b^2 v}{2} \left(\frac{\Gamma \left(\frac{v-1}{2} \right)}{\Gamma \left(\frac{v}{2} \right)} \right)^2 \quad \text{if } v > 2 \]

Other comments

\(X \) has a standard non-central \(t \) distribution with \(v \) degrees of freedom and non-centrality parameter \(d \) if \(X = (Z + b) / \sqrt{Y/v} \), \(Y \sim \chi^2_v \), \(Z \sim N(0,1) \) and \(Y \) and \(Z \) are independent. It has the following non-central moments:

\[E(X^k) = \left(\frac{v}{2} \right)^{k/2} \frac{\Gamma \left(\frac{v-k}{2} \right)}{\Gamma \left(\frac{v}{2} \right)} a^{-b^2/2} \frac{d^k e^{b^2/2}}{db} \quad \text{if } v > k \]

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “non-central t”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a DistributionName of “non-central t4”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The normal distribution

[NormalDistribution]

The normal distribution is a continuous probability distribution that has a bell-shaped probability density function:

\[f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right) \]
It is usually considered to be the most prominent probability distribution in statistics partly because it arises in a very large number of contexts as a result of the central limit theorem and partly because it is relatively tractable analytically.

The normal distribution is also called the Gaussian distribution. The unit normal (or standard normal) distribution is \(N(0,1) \).

Characteristics of the normal distribution are set out below:

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Normal distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(X \sim N(\mu, \sigma^2))</td>
</tr>
<tr>
<td>Parameters</td>
<td>(\sigma = \text{scale parameter (} \sigma > 0)) (\mu = \text{location parameter})</td>
</tr>
<tr>
<td>Domain</td>
<td>(-\infty < x < +\infty)</td>
</tr>
<tr>
<td>Probability density function</td>
<td>(f(x) \equiv \phi(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right))</td>
</tr>
<tr>
<td>Cumulative distribution function</td>
<td>(F(x) \equiv \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{1}{2} \left(\frac{t - \mu}{\sigma} \right)^2 \right) dt)</td>
</tr>
<tr>
<td>Mean</td>
<td>(\mu)</td>
</tr>
<tr>
<td>Variance</td>
<td>(\sigma^2)</td>
</tr>
<tr>
<td>Skewness</td>
<td>0</td>
</tr>
<tr>
<td>(Excess) kurtosis</td>
<td>0</td>
</tr>
<tr>
<td>Characteristic function</td>
<td>(e^{\mu t - \frac{1}{2} \sigma^2 t^2})</td>
</tr>
</tbody>
</table>

Other comments

The inverse unit normal distribution function (i.e. its quantile function) is commonly written \(N^{-1}(x) \) (also in some texts \(\Phi(x) \)) and the unit normal density function is commonly written \(\phi(x) \). \(N^{-1}(x) \) is also called the probit function.

The error function distribution is \(N\left(0, \frac{1}{2h}\right) \), where \(h \) is now an inverse scale parameter \(h > 0 \).

The median and mode of a normal distribution are \(\mu \).

The truncated first moments of \(N(\mu, \sigma^2) \) are:
\[
\int_{L}^{U} xf(x)dx = \mu \left(N \left(\frac{U - \mu}{\sigma} \right) - N \left(\frac{L - \mu}{\sigma} \right) \right) \\
- \sigma \left(\phi \left(\frac{U - \mu}{\sigma} \right) - \phi \left(\frac{L - \mu}{\sigma} \right) \right)
\]

where \(\phi(x) \) and \(N(x) \) are the pdf and cdf of the unit normal distribution respectively.

The mean excess function of a standard normal distribution is thus

\[
e(u) = \frac{\phi(u) - uN(-u)}{N(-u)} = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2}u^2 \right) - uN(-u)
\]

The central moments of the normal distribution are:

\[
E((X - \mu)^k) = \begin{cases}
0 & \text{if } k \text{ is odd} \\
\sigma^p \times 1 \times 3 \times ... \times (k - 1) & \text{if } k \text{ is even}
\end{cases}
\]

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “normal”. For details of other supported probability distributions see here.

The Pareto distribution

\textbf{Pareto distribution}
\textbf{[ParetoDistribution]}

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Pareto distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(X \sim \text{Pareto}(\alpha, \beta))</td>
</tr>
</tbody>
</table>
| Parameters | \(\alpha = \text{shape parameter} \ (\alpha > 0) \) \\
| | \(\beta = \text{scale parameter} \ (\beta > 0) \) |
| Domain | \(0 \leq x < +\infty \) |
| Probability density function | \(f(x) = \frac{\alpha \beta^\alpha}{(\beta + x)^{\alpha+1}} \) |
| Cumulative distribution function | \(F(x) = 1 - \left(\frac{\beta}{\beta + x} \right)^\alpha \) |
| Mean | \(\frac{\beta}{\alpha - 1} \) \ if \(\alpha > 1 \) |
Variance

\[\frac{\alpha \beta^2}{(\alpha - 1)^2(\alpha - 2)} \quad \text{for } \alpha > 2 \]

Skewness

\[\frac{2(\alpha + 1)}{\alpha - 3} \sqrt{\frac{\alpha - 2}{\alpha}} \quad \text{for } \alpha > 3 \]

(Excess) kurtosis

\[\frac{6(\alpha^3 + \alpha^2 - 6\alpha - 2)}{\alpha(\alpha - 3)(\alpha - 4)} \quad \text{for } \alpha > 4 \]

Other comments

Also known as the Pareto distribution of the second kind in which case the Pareto distribution of the first kind has \(\beta \leq x < +\infty \),

\[f(x) = \frac{\alpha \beta^\alpha}{x^{\alpha+1}} \text{ and } F(x) = 1 - \left(\frac{\beta}{x}\right)^\alpha. \]

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a `DistributionName` of “pareto”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a `DistributionName` of “pareto3”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The power function distribution

[PowerFunctionDistribution]

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Power function distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(k = \text{shape parameter} \ (k > 0))</td>
</tr>
<tr>
<td>Parameters</td>
<td>(0 \leq x \leq 1)</td>
</tr>
<tr>
<td>Domain</td>
<td>(f(x) = k x^{k-1})</td>
</tr>
<tr>
<td>Probability density function</td>
<td>(F(x) = x^k)</td>
</tr>
<tr>
<td>Cumulative distribution function</td>
<td>(k + 1)</td>
</tr>
<tr>
<td>Mean</td>
<td>(k^3 + 4k^2 + 5k + 2)</td>
</tr>
<tr>
<td>Variance</td>
<td>(\frac{k}{k^3 + 4k^2 + 5k + 2})</td>
</tr>
<tr>
<td>Other comments</td>
<td>Its non-central moments around (a) (which can be used to derive its non-central moments around 0) are: (E(X^r) = \frac{k}{r+k})</td>
</tr>
</tbody>
</table>
Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “power”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a DistributionName of “power3”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The Rayleigh distribution

[RayleighDistribution]

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Rayleigh distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>X ~ Rayleigh(k)</td>
</tr>
<tr>
<td>Parameters</td>
<td>k = scale parameter (k > 0)</td>
</tr>
<tr>
<td>Domain</td>
<td>0 ≤ x < +∞</td>
</tr>
<tr>
<td>Probability density function</td>
<td>f(x) = (\frac{x \exp\left(-\frac{x^2}{2k^2}\right)}{k^2})</td>
</tr>
<tr>
<td>Cumulative distribution function</td>
<td>F(x) = 1 - \exp\left(-\frac{x^2}{2k^2}\right)</td>
</tr>
<tr>
<td>Mean</td>
<td>k \sqrt{\frac{\pi}{2}}</td>
</tr>
<tr>
<td>Variance</td>
<td>\frac{4 - \pi}{2} k^2</td>
</tr>
<tr>
<td>Skewness</td>
<td>\frac{2\sqrt{\pi}(\pi - 3)}{(4 - \pi)^2}</td>
</tr>
<tr>
<td>(Excess) kurtosis</td>
<td>\frac{-6\pi^2 - 24\pi + 16}{(4 - \pi)^2}</td>
</tr>
<tr>
<td>Characteristic function</td>
<td>(1 - kt \exp\left(-\frac{k^2 t^2}{2}\right) \sqrt{\frac{\pi}{2}} \left[-i \text{erf}\left(\frac{ikt}{\sqrt{2}}\right) - i\right])</td>
</tr>
</tbody>
</table>

Here erf(z) is the error function, which is defined as:

\[
erf(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt \quad \Rightarrow \quad \text{erf}(x) = 2 \cdot N(x\sqrt{2}) - 1
\]

Other comments

The Rayleigh distribution often arises when the overall magnitude of a vector is related to its directional components.
Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “rayleigh”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a DistributionName of “rayleigh2”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The reciprocal distribution
[ReciprocalDistribution]

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Reciprocal distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>a, b = boundary parameters (0 < a < b)</td>
</tr>
<tr>
<td>Parameters</td>
<td>a ≤ x ≤ b</td>
</tr>
<tr>
<td>Domain</td>
<td></td>
</tr>
<tr>
<td>Probability density function</td>
<td>f(x) = (\frac{1}{x(\log b - \log a)})</td>
</tr>
<tr>
<td>Cumulative distribution function</td>
<td>F(x) = (\frac{\log x - \log a}{\log b - \log a})</td>
</tr>
<tr>
<td>Mean</td>
<td>(b - a)</td>
</tr>
<tr>
<td>Variance</td>
<td>(\frac{1}{2} \left(\frac{b^2 - a^2}{\log b - \log a} \right) - \left(\frac{b - a}{\log b - \log a} \right)^2)</td>
</tr>
<tr>
<td>Other comments</td>
<td>Its non-central moments are: (E(X^r) = \frac{b^r - a^r}{r(\log b - \log a)})</td>
</tr>
</tbody>
</table>

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “reciprocal”. For details of other supported probability distributions see here.

The Rice distribution
[RiceDistribution]
The Rice distribution is characterises the magnitude of a circular bivariate normal random vector with potentially non-zero mean.

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Rice distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>$X \sim \text{Rice}(\nu, \sigma)$</td>
</tr>
</tbody>
</table>
| Parameters | $\nu = \text{parameter}$
| | $\sigma = \text{parameter}$ |
| Domain | $0 \leq x < +\infty$ |
| Probability density function |
| $f(x) = \frac{x}{\sigma^2} \exp\left(-\frac{x^2 + \nu^2}{2\sigma^2}\right) l_0\left(\frac{x\nu}{\sigma^2}\right)$ |
| where $l_0(q)$ is the modified Bessel function of the first kind of order zero, i.e. $l_0(q) = \sum_{k=0}^{\infty} \left(\frac{q}{2}\right)^{2k} \frac{1}{(k!)^2}$ |

Cumulative distribution function

$F(x) = 1 - Q_1\left(\frac{\nu}{\sigma}, \frac{x}{\sigma}\right)$ where $Q_1(p, q)$ is the Marcum Q-function, i.e. $Q_1(p, q) = \int_q^\infty x \exp\left(-\frac{x^2 + p^2}{2}\right) l_0(px)dx$.

Mean

$\sigma \sqrt{\frac{\pi}{2}} L_{1/2}\left(-\frac{\nu^2}{2\sigma^2}\right)$

Variance

$2\sigma^2 + \nu^2 - \frac{\pi\sigma^2}{2} \left(L_{1/2}\left(-\frac{\nu^2}{2\sigma^2}\right)\right)^2$

Other comments

The Rayleigh distribution is a special case of the Rice distribution where $\nu = 0$.

Its non-central moments are:

$E(X^r) = \sigma^r 2^{r/2} \Gamma\left(1 + \frac{r}{2}\right) L_{r/2}\left(-\frac{\nu^2}{2\sigma^2}\right)$
$r = 1, 2, ...$

where $L_q(x) = {}_1F_1(-q; 1; x)$ is a Laguerre polynomial.

Nematrian web functions

This distribution is not currently supported within the Nematrian web function library. For details of supported probability distributions see here.

The Student’s t distribution

[StudentsTDistribution]

The Student’s t distribution (more simply the t distribution) arises when estimating the mean of a normally distributed population when sample sizes are small and the population standard deviation is unknown.
Distribution name	(Standard) Student's t distribution
Common notation | $X \sim t_{\nu}$
Parameters | ν = degrees of freedom ($\nu > 0$, usually ν is an integer although in some situations a non-integral ν can arise)
Domain | $-\infty < x < +\infty$
Probability density function | $f(x) = \frac{1}{\sqrt{\pi \nu}} \frac{\Gamma\left(\frac{\nu + 1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu + 1}{2}} = \frac{1}{\sqrt{\nu}} \frac{\Gamma\left(\frac{1}{2}\right)}{B\left(\frac{1}{2}, \frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu + 1}{2}}$
Cumulative distribution function | $F(x) = \begin{cases} \frac{1}{2} I_z\left(\frac{\nu}{2}, 1\right) & x < 0 \\ 1 - \frac{1}{2} I_z\left(\frac{\nu}{2}, 1\right) & x \geq 0 \end{cases}$
where $z = \nu/(\nu + x^2)$
Mean | 0
Variance | $\frac{\nu}{\nu - 2}$ for $\nu > 2$
Skewness | 0 for $\nu > 3$
(Excess) kurtosis | $\frac{3(\nu - 2)}{\nu - 4} - 3 = \frac{6}{\nu - 4}$ for $\nu > 4$
Characteristic function | $K_{\nu/2}(\sqrt{\nu}|t|)(\sqrt{\nu}|t|)^{\nu/2} \Gamma(\nu/2)2^{\nu/2 - 1}$
where $K_{\nu/2}(x)$ is a Bessel function
Other comments | It is a special case of the generalised hyperbolic distribution.
Its non-central moments if r is even and $0 < r < \nu$ are:
$E(X^r) = \frac{\Gamma\left(\frac{r + 1}{2}\right) \Gamma\left(\frac{\nu - r}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{\nu}{2}\right)} \nu^{r/2}$
If r is even and $0 < \nu \leq r$ then $E(X^r) = \infty$, if r is odd and $0 < r < \nu$ then $E(X^r) = 0$ and if r is odd and $0 < \nu \leq r$ then $E(X^r)$ is undefined.

Nematrian web functions
Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “student's t”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a...
Distribution name of “student's t3”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The triangular distribution

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Triangular distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(X \sim \text{Triangular}(a, b, c))</td>
</tr>
<tr>
<td>Parameters</td>
<td>(a, b =) boundary parameters ((a < b)) (c =) mode parameter ((a \leq c \leq b))</td>
</tr>
<tr>
<td>Domain</td>
<td>(a \leq x \leq b)</td>
</tr>
</tbody>
</table>
| Probability density function | \[
\begin{align*}
 f(x) &= \begin{cases}
 \frac{2(x-a)}{(c-a)(b-a)} & a \leq x \leq c \\
 \frac{2(b-x)}{(b-c)(b-a)} & c < x \leq b
 \end{cases}
\end{align*}
\] |
| Cumulative distribution function | \[
\begin{align*}
 F(x) &= \begin{cases}
 \frac{(x-a)^2}{(c-a)(b-a)} & a \leq x \leq c \\
 1 - \frac{(b-x)^2}{(b-c)(b-a)} & c < x \leq b
 \end{cases}
\end{align*}
\] |
| Mean | \(\frac{a+b+c}{3} \) |
| Variance | \(\frac{a^2 + b^2 + c^2 - ab - ac - bc}{18} \) |
| Skewness | \(\frac{\sqrt{2(a+b-2c)(2a-b-c)(a-2b+c)} - 3}{5(a^2 + b^2 + c^2 - ab - ac - bc)^{3/2}} \) |
| (Excess) kurtosis | \(-\frac{3}{5} \) |
| Characteristic function | \[
\begin{align*}
 &-2 \frac{(b-c)e^{iat} - (b-a)e^{ict} + (c-a)e^{ibt}}{(b-a)(c-a)(b-c)t^2}
\end{align*}
\] |
| Other comments | Its mode is \(c \). Its median is: \[
\begin{align*}
 a + \sqrt{\frac{(c-a)(b-a)}{2}} & \quad c \geq \frac{a + b}{2} \\
 b - \sqrt{\frac{(c-a)(b-a)}{2}} & \quad c \leq \frac{a + b}{2}
\end{align*}
\] |
Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “triangular”. For details of other supported probability distributions see here.

The uniform distribution

[UniformDistribution]

The uniform distribution describes a (continuous) probability distribution in which any outcome within a given range is equally probable.

<table>
<thead>
<tr>
<th>Distribution name</th>
<th>Uniform distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>$X \sim U(a, b)$</td>
</tr>
<tr>
<td>Parameters</td>
<td>a, b = boundary parameters ($a < b$)</td>
</tr>
<tr>
<td>Domain</td>
<td>$a \leq x \leq b$</td>
</tr>
<tr>
<td>Probability density function</td>
<td>$f(x) = \frac{1}{b - a}$</td>
</tr>
<tr>
<td>Cumulative distribution function</td>
<td>$F(x) = \frac{x - a}{b - a}$</td>
</tr>
<tr>
<td>Mean</td>
<td>$(a + b)/2$</td>
</tr>
<tr>
<td>Variance</td>
<td>$(b - a)^2/12$</td>
</tr>
<tr>
<td>Skewness</td>
<td>0</td>
</tr>
<tr>
<td>(Excess) kurtosis</td>
<td>$-\frac{6}{5}$</td>
</tr>
<tr>
<td>Characteristic function</td>
<td>$\frac{e^{ibt} - e^{iat}}{it(b - a)}$</td>
</tr>
<tr>
<td>Other comments</td>
<td>Its non-central moments ($r = 1, 2, 3, ...$) are $E(X^r) = \frac{1}{(b-1)^{r+1}} (b^{r+1} - a^{r+1})$. Its median is $(a + b)/2$.</td>
</tr>
</tbody>
</table>

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “uniform”. For details of other supported probability distributions see here.

The Weibull distribution
The Weibull distribution is a special case of the generalised extreme value (GEV) distribution. It characterises the distribution of 'block maxima' under certain (relatively restrictive) conditions.
The inverse Wishart distribution

The inverse Wishart distribution (otherwise called the inverted Wishart distribution) \(W^{-1}(V, m) \) is a probability distribution that is used in the Bayesian analysis of real-valued positive definite matrices (e.g., matrices of the type that arise in risk management contexts). It is a conjugate prior for the covariance matrix of a multivariate normal distribution.

It has the following characteristics, where \(B \) is a \(n \times n \) matrix, \(V \) is a positive definite matrix and \(\Gamma_n(\cdot) \) is the multivariate gamma function.

<table>
<thead>
<tr>
<th>Parameters (and constraints on parameters):</th>
<th>(m > n - 1) ((m) = degrees of freedom, real) (V > 0) ((V) = inverse scale matrix, positive definite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support (i.e. values that it can take)</td>
<td>(B > 0), i.e. is positive definite, (B) an (n \times n) matrix</td>
</tr>
<tr>
<td>Probability density function</td>
<td>(</td>
</tr>
<tr>
<td>Mean</td>
<td>(\frac{m - n - 1}{m})</td>
</tr>
</tbody>
</table>

If the elements of \(B \) are \(B_{i,j} \) and the elements of \(V \) are \(V_{i,j} \) then

\[
\text{var}(B_{i,j}) = \frac{(m-n+1)V_{i,j}^2 + (m-n-1)V_{i,i}V_{j,j}}{(m-n)(m-n-1)^2(m-n-3)}
\]

The main use of the inverse Wishart distribution appears to arise in Bayesian statistics. Suppose we want to make an inference about a covariance matrix, \(V \), whose prior \(p(V) \) has a \(W^{-1}(V, m) \) distribution. If the observation set \(X = (x_1, ..., x_K) \) where the \(X_k \) are independent \(n \)-variate Normal (i.e. Gaussian) random variables drawn from a \(N(0, Q) \) distribution then the conditional distribution \(p(Q|X) \), i.e. the probability of \(Q \) given \(X \), has a \(W^{-1}(A + V, m + K) \) distribution, where \(A = XX^T \) is the sample covariance matrix.

The univariate special case of the inverse Wishart distribution is the inverse gamma distribution. With \(n = 1, \alpha = m/2, \beta(= V/2) = V_{1,1}/2, x(= B/2) = B_{1,1}/2 \) we have:

\[
p(x|\alpha, \beta) = \frac{\beta^\alpha x^{-\alpha-1} \exp(-\beta/x)}{\Gamma(\alpha)}
\]

where \(\Gamma(\cdot) \equiv \Gamma_1(\cdot) \) is the ordinary (i.e. univariate) Gamma function, see \texttt{MnGamma}.

For other probability distributions see here.
Copulas (a copula is a special type of continuous multivariate distribution)

The Clayton copula

The Clayton copula is a copula that allows any specific non-zero level of (lower) tail dependency between individual variables. It is an Archimedean copula, and exchangeable.

<table>
<thead>
<tr>
<th>Copula name</th>
<th>Clayton copula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>$U \sim C_{\theta}^{Cl}$</td>
</tr>
<tr>
<td>Parameters</td>
<td>$\theta \geq 0$ (can be extended to $\theta \geq -1$)</td>
</tr>
<tr>
<td>Domain</td>
<td>$0 \leq u_i \leq 1 \quad i = 1, \ldots, n$</td>
</tr>
<tr>
<td>Copula</td>
<td>$C_{\theta}^{Cl}(u_1, \ldots, u_n) = \left(\sum_{i=1}^{n} (u_i^{-\theta} - 1) + 1 \right)^{-1/\theta}$ [Or if $\theta = 0$ we use the limit $\lim_{\theta \to 0} C_{\theta}^{Cl}$]</td>
</tr>
<tr>
<td>Kendall’s rank correlation coefficient (for bivariate case)</td>
<td>θ [2 + \theta]</td>
</tr>
<tr>
<td>Coefficient of upper tail dependence, λ_u</td>
<td>0</td>
</tr>
<tr>
<td>Coefficient of lower tail dependence, λ_l</td>
<td>$2^{-1/\theta}$</td>
</tr>
<tr>
<td>Archimedean generator function, $\phi(t)$</td>
<td>$\theta^{-1}(t^{-\theta} - 1)$ [Or if $\theta = 0$ we use the limit $\lim_{\theta \to 0} \phi(\theta) = -\log t$. If $\theta \neq 0$ then a simpler version, which does not alter the copula itself, is $\phi(t) = t^{-\theta} - 1$.]</td>
</tr>
<tr>
<td>Other comments</td>
<td>If $\theta = 0$ we obtain the independence copula. The Clayton copula (like the Frank copula) is a comprehensive copula in that it interpolates between a lower limit of the countermonotonicity copula ($\theta \to -1$) and an upper limit of the comonotonicity copula ($\theta \to +\infty$).</td>
</tr>
</tbody>
</table>

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “Clayton Copula”. For details of other probability distributions see here.

The comonotonicity copula

The Comonotonicity copula is a special copula characterising perfect positive dependence, in the sense that the U_i are almost surely strictly increasing functions of each other.

<table>
<thead>
<tr>
<th>Copula name</th>
<th>comonotonicity copula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>$U \sim M$</td>
</tr>
<tr>
<td>Parameters</td>
<td>θ</td>
</tr>
</tbody>
</table>
Domain

0 ≤ u_i ≤ 1 \quad i = 1, ..., n

Copula

\[M(u_1, ..., u_n) = \min(u_1, ..., u_n) \]

Kendall’s rank correlation coefficient (for bivariate case)

1

Coefficient of upper tail dependence

1

Coefficient of lower tail dependence

1

Other comments

Is the extreme case where dependency is as strongly “positive” as possible (i.e. achieves the Fréchet upper bound)

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a `DistributionName` of “Comonotonicity Copula”. For details of other supported probability distributions see here.

The countermonotonicity copula

[CountermonotonicityCopula]

The Countermonotonicity copula is a special copula characterising perfect negative dependence, in the sense that U_1 is almost surely a strictly decreasing function of U_2 and vice-versa.

<table>
<thead>
<tr>
<th>Copula name</th>
<th>countermonotonicity copula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>U~W</td>
</tr>
<tr>
<td>Parameters</td>
<td>(\theta)</td>
</tr>
<tr>
<td>Domain</td>
<td>0 ≤ u_i ≤ 1 \quad i = 1,2</td>
</tr>
<tr>
<td>Copula</td>
<td>(W(u_1, u_2) = \max(u_1 + u_2 - 1.0))</td>
</tr>
<tr>
<td>Kendall’s rank correlation coefficient</td>
<td>-1</td>
</tr>
<tr>
<td>Coefficient of upper tail dependence</td>
<td>1</td>
</tr>
<tr>
<td>Coefficient of lower tail dependence</td>
<td>1</td>
</tr>
<tr>
<td>Other comments</td>
<td>Is the extreme case where dependency is as strongly “negative” as possible (i.e. achieves the Fréchet lower bound)</td>
</tr>
</tbody>
</table>

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a `DistributionName` of “Countermonotonicity Copula”. For details of other supported probability distributions see here.

The Frank copula

[FrankCopula]
The *Frank* copula is a copula that is sometimes used in the modelling of codependency. It is an Archimedean copula, and exchangeable.

<table>
<thead>
<tr>
<th>Copula name</th>
<th>Frank copula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>$U \sim C^F_\theta$</td>
</tr>
<tr>
<td>Parameters</td>
<td>$0 \leq u_i \leq 1$ for $i = 1, ..., n$</td>
</tr>
<tr>
<td>Domain</td>
<td>$0 \leq u_i \leq 1$ for $i = 1, ..., n$</td>
</tr>
<tr>
<td>Copula</td>
<td>$C^F_\theta(u_1, ..., u_n) = -\frac{1}{\theta} \log \left(1 + \prod_i (\exp(-\theta u_i) - 1) \right)$</td>
</tr>
</tbody>
</table>

Or if $\theta = 0$ we use the limit $\lim_{\theta \to 0} C^F_\theta$ which the independence copula.

Kendall’s rank correlation coefficient (for bivariate case)

$1 - 4\theta^{-1}(1 - D_1(\theta))$

where $D_1(\theta)$ is the Debye function defined as:

$D_1(\theta) = \theta^{-1} \int_0^\infty \frac{t}{\exp(t) - 1} dt$

Coefficient of upper tail dependence, λ_u

0

Coefficient of lower tail dependence, λ_l

0

Archimedean generator function, $\phi(t)$

$-\log \left(\frac{\exp(-\theta t) - 1}{\exp(-\theta t)} \right)$

Or if $\theta = 0$ we use the limit $\lim_{\theta \to 0} \phi(\theta)$ which is taken as $-\log t$.

Other comments

If $\theta = 0$ we obtain the independence copula. The Frank copula (like the Clayton copula) is a comprehensive copula in that it interpolates between a lower limit of the countermonotonicity copula ($\theta \to -\infty$) and an upper limit of the comonotonicity copula ($\theta \to +\infty$).

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “Frank Copula”. For details of other supported probability distributions see here.

The Generalised Clayton copula

[GeneralisedClaytonCopula]

The Generalised Clayton copula is a copula that allows any specific (non-zero) level of (lower) tail dependency between individual variables. It is an Archimedean copula and exchangeable.

<table>
<thead>
<tr>
<th>Copula name</th>
<th>Generalised Clayton copula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>$U \sim C^{GC}_{\theta, \delta}$</td>
</tr>
<tr>
<td>Parameters</td>
<td>$\theta \geq 0$, $\delta \geq 1$</td>
</tr>
<tr>
<td>Domain</td>
<td>$0 \leq u_i \leq 1$ for $i = 1, ..., n$</td>
</tr>
<tr>
<td>Copula</td>
<td>$C^{GC}_{\theta, \delta}(u_1, ..., u_n) = \left(\sum_i (u_i^{-\theta} - 1)^\delta \right)^{1/\delta} + 1$</td>
</tr>
</tbody>
</table>

Or if $\theta = 0$ we use the limit $\lim_{\theta \to 0} C^{GC}_{\theta, \delta}$.
Kendall’s rank correlation coefficient (for bivariate case), ρ_T:
\[
(2 + \theta)\delta - 2 \over (2 + \theta)\delta
\]
Coefficient of upper tail dependence, λ_U:
\[
2 - 2^{-1/\delta}
\]
Coefficient of lower tail dependence, λ_L:
\[
2^{-1/(\theta\delta)}
\]
Archimedean generator function, $\phi(t)$:
\[
\theta^{-\delta}(t^{-\theta} - 1)
\]
Or if $\theta = 0$ we use the limit $\lim_{\theta \to 0} \phi_{\theta}(t)$.

Other comments:
When $\delta = 1$ the generalised Clayton copula becomes the Clayton copula.

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “Generalised Clayton Copula”. For details of other supported probability distributions see here.

The Gumbel copula

[GumbelCopula]

The Gumbel copula is a copula that allows any specific level of (upper) tail dependency between individual variables. It is an Archimedean copula, and exchangeable.

<table>
<thead>
<tr>
<th>Copula name</th>
<th>Gumbel copula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>$U \sim C^G_\theta$</td>
</tr>
<tr>
<td>Parameters</td>
<td>$1 \leq \theta < \infty$</td>
</tr>
<tr>
<td>Domain</td>
<td>$0 \leq u_i \leq 1$ $i = 1, ..., n$</td>
</tr>
<tr>
<td>Copula</td>
<td>$C^G_\theta (u_1, ..., u_n) = \exp \left(- \left(\sum_i \left(- \log u_i \right)^\theta \right)^{1/\theta} \right)$</td>
</tr>
<tr>
<td>Kendall’s rank correlation coefficient (for bivariate case)</td>
<td>$1 - {1 \over \theta}$</td>
</tr>
<tr>
<td>Coefficient of upper tail dependence, λ_U</td>
<td>$2 - 2^{1/\theta}$</td>
</tr>
<tr>
<td>Coefficient of lower tail dependence, λ_L</td>
<td>0</td>
</tr>
<tr>
<td>Archimedean generator function, $\phi(t)$</td>
<td>$(- \log t)^\theta$</td>
</tr>
<tr>
<td>Other comments</td>
<td>If $\theta = 1$ we obtain the independence copula and as $\theta \to \infty$ we approach the comonotonicity copula.</td>
</tr>
</tbody>
</table>

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “Gumbel Copula”. For details of other supported probability distributions see here.
The Gaussian copula
[**GaussianCopula**]

The *Gaussian* copula is the copula that underlies the multivariate normal distribution.

<table>
<thead>
<tr>
<th>Copula name</th>
<th>Gaussian copula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(U \sim C_{G}^{C})</td>
</tr>
<tr>
<td>Parameters</td>
<td>(C), a non-negative definite (n \times n) matrix, i.e. a matrix that can correspond to a correlation matrix</td>
</tr>
<tr>
<td>Domain</td>
<td>(0 \leq u_i \leq 1) (i = 1, ..., n)</td>
</tr>
<tr>
<td>Copula</td>
<td>(C_{G}^{C}(u_1, ..., u_n) = \Phi_C(N^{-1}(u_1), ..., N^{-1}(u_2))) where (N^{-1}(x)) is the inverse normal function and (\Phi_C) is the cumulative distribution function of the multivariate normal distribution defined by a covariance matrix equal to (C)</td>
</tr>
</tbody>
</table>

Kendall’s rank correlation coefficient (for bivariate case), \(\rho_T \)	\(\frac{2}{\pi} \arcsin \rho \) Where \(\rho \) is the correlation coefficient between the two variables
Coefficient of upper tail dependence, \(\lambda_u \)	0 (unless the correlation matrix exhibits perfect positive or negative dependence)
Coefficient of lower tail dependence, \(\lambda_l \)	0 (unless the correlation matrix exhibits perfect positive or negative dependence)

| Other comments | The *Spearman rank correlation coefficient* is given by: \(\rho_S = \frac{6}{\pi} \arcsin \frac{\rho}{2} \) where \(\rho \) is the (normal) *correlation coefficient* between the two variables. |
| | If \(C = I_n \) (the \(n \times n \) identity matrix) then we obtain the *independence copula*. |

Nematrian web functions

Functions relating to the above distribution in the two dimensional case may be accessed via the [Nematrian web function library](https://www.nematrian.com) by using a *DistributionName* of “Gaussian Copula (2d)”. For details of other supported probability distributions see [here](https://www.nematrian.com).

The Independence copula
[**IndependenceCopula**]

The *Independence* copula is the copula that results from a dependency structure in which each individual variable is independent of each other. It is an *Archimedean copula*, and exchangeable.

<table>
<thead>
<tr>
<th>Copula name</th>
<th>Independence copula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>(U \sim \Pi)</td>
</tr>
<tr>
<td>Parameters</td>
<td>None</td>
</tr>
<tr>
<td>Domain</td>
<td>(0 \leq u_i \leq 1) (i = 1, ..., n)</td>
</tr>
<tr>
<td>Copula</td>
<td>(\Pi(u_1, ..., u_n) = \prod_{i} u_i)</td>
</tr>
</tbody>
</table>
Kendall’s rank correlation coefficient (for bivariate case) | 0
---|---
Coefficient of upper tail dependence, λ_u | 0
Coefficient of lower tail dependence, λ_l | 0
Archimedean generator function, $\phi(t)$ | $-\log t$
Other comments | The independence copula is a special case of several Archimedean copulas. It is also the special case of the Gaussian copula with a correlation matrix equal to the identity matrix.

Nematrian web functions

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of “Independence Copula”. For details of other supported probability distributions see here.

The t copula
[TCopula]

The t copula is the copula that underlies the multivariate Student’s t distribution.

<table>
<thead>
<tr>
<th>Copula name</th>
<th>t copula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common notation</td>
<td>$U \sim C_{t_{u},C}$</td>
</tr>
</tbody>
</table>

Parameters

C, a non-negative definite $n \times n$ matrix, i.e. a matrix that can correspond to a correlation matrix
$\nu = \text{degrees of freedom} (\nu > 0$, usually ν is an integer although in some situations a non-integral ν can arise)
(note in principle each marginal distribution could in principle have a different number of degrees of freedom although such a refinement is not commonly seen)

Domain

$0 \leq u_i \leq 1 \quad i = 1, ..., n$

Copula

$C_{t_{u},C}(u_1, ..., u_n) = t_{u,C}(t_{u}^{-1}(u_1), ..., t_{u}^{-1}(u_2))$

where $t_{u}^{-1}(x)$ is the inverse student’s t function and $t_{u,C}$ is the cumulative distribution function of the multivariate student’s t distribution with arbitrary mean and matrix generator equal to C

Kendall’s rank correlation coefficient (for bivariate case), ρ_t

$\frac{2}{\pi} \arcsin \rho$

Where ρ is the correlation coefficient between the two variables

Coefficient of upper tail dependence, λ_u

$2t_{\nu+1} \left(\frac{(\nu + 1)(1 - \rho)}{1 + \rho} \right)$

Coefficient of lower tail dependence, λ_l

$2t_{\nu+1} \left(\frac{(\nu + 1)(1 - \rho)}{1 + \rho} \right)$

Other comments

If $C = I_n$ (the $n \times n$ identity matrix) then, in contrast to the Gaussian copula, we do not recover the independence copula.

Other comments

If $C = I_n$ (the $n \times n$ identity matrix) then, in contrast to the Gaussian copula, we do not recover the independence copula.
Nematrian web functions

Functions relating to the above distribution in the two-dimensional case may be accessed via the Nematrian web function library by using a DistributionName of “student’s t (2d)”. For details of other supported probability distributions see here.