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Copulas have become a more common risk management tool in recent years because they provide a 
more complete means of characterising co-dependency between series than merely correlation 
coefficients. 
 
If different return series are coming from a multivariate Normal distribution then their co-
dependency characteristics are entirely driven by their correlation matrix. A correlation coefficient of 
1 corresponds to perfectly positively correlated, 0 to be being uncorrelated and -1 to completely 
negatively correlated). Whilst correlation is an important tool in finance, correlation is not the same 
thing as ‘dependence’. Two series can on average be ‘uncorrelated’ (across the distribution as a 
whole), but may still be ‘correlated’ in the tail of the distribution (i.e. tend there to move in tandem). 
 
For risk management purposes we are often particularly interested in extreme adverse events. In a 
portfolio context these will often involve several very adverse factors coming together at the same 
time, i.e. we are particularly interested in the extent to which factors driving portfolio behaviour 
seem to be ‘correlated in the (downside) tail’ of the distribution. 
 
The definition of a copula is a function 𝐶: [0,1]𝑁 → [0,1] where: 
 

(a) There are (uniform) random variables 𝑈1, … , 𝑈𝑁 taking values in [0,1] such that 𝐶 is their 
cumulative (multivariate) distribution function; and 

 
(b) 𝐶 has uniform marginal distributions, i.e. for all 𝑖 ≤ 𝑁 and 𝑢𝑖 ∈ [0,1] we have 

𝐶(1, … 1, 𝑢𝑖, 1, … ,1) = 𝑢𝑖 
 
The basic rationale for copulas is that any joint distribution 𝐹 of a set of random variables 𝑋1, … , 𝑋𝑁 
i.e. 𝐹(𝐱) = 𝑃𝑟𝑜𝑏(𝑋1 ≤ 𝑥1, … , 𝑋𝑁 ≤ 𝑥𝑁, ) can be separated into two parts. The first is the 
combination of the marginal distribution functions for each random variable in isolation, also called 
the marginals, i.e. 𝐹𝑖(. ) where 𝐹𝑖(𝑥) = 𝑃𝑟𝑜𝑏(𝑋𝑖 ≤ 𝑥). The second is the copula that describes the 
dependence structure between the random variables. Mathematically, this decomposition relies on 
Sklar’s theorem, which states that if 𝑋1, … , 𝑋𝑁 are random variables with marginal distribution 
functions 𝐹1, … , 𝐹𝑁 and joint distribution function 𝐹 then there exists an N-dimensional copula 𝐶 
such that for all 𝑥 ∈ ℛ𝑁: 
 

𝐹(𝐱) = 𝐶(𝐹1(𝑥1), … , 𝐹𝑁(𝑥𝑁)) = 𝐶(𝐅(𝐱)) 

 
Copulas can be of any dimension 𝑁 > 1. For example, the co-depency between 3 different series 
cannot be encapsulated merely by 3 different elements characterising the co-dependency between 
each pair of series. A quantum mechanical analogue would be the possibility that 3 different 
quantum mechanical objects can be ‘entangled’ in more complex ways than is possible merely by 
considering each pair in turn. 
 
The simplest copulas are two-dimensional ones that describe aspects of the co-depencency merely 
between two different random variables. These are prototypical of more complicated copulas. Such 
a copula, 𝐶, has the following properties: 
 

(a) Its domain, 𝐷𝑜𝑚(𝐶), i.e. the range of values for which it is defined, is a unit square, i.e. 
𝐷𝑜𝑚(𝐶) = [0,1]×[0,1] 
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(b) It adheres to the following relationships: 

 
𝐶(0, 𝑢) = 𝐶(𝑢, 0) = 0 ∀𝑢 ∈ [0,1] 
𝐶(1, 𝑢) = 𝐶(𝑢, 1) = 𝑢 ∀𝑢 ∈ [0,1]  

 
(c) It is ‘2-increasing’, i.e. 𝐶(𝑤1, 𝑤2) − 𝐶(𝑤1, 𝑢2) − 𝐶(𝑢1, 𝑤2) + 𝐶(𝑢1, 𝑢2) ≥ 0 whenever 

(𝑢1, 𝑢2) ∈ [0,1]2, (𝑤1, 𝑤2) ∈ [0,1]2 and 0 ≤ 𝑢1 ≤ 𝑤1 ≤ 1, 0 ≤ 𝑢2 ≤ 𝑤2 ≤ 1 
 
The copula function of random variables is invariant under a strictly increasing transformation. Thus 
the copula completely encapsulates the dependence characteristics between different random 
variables. 
 
Certain relationships and limits can be derived on the values that copulas can take. Fréchet copulas 
corresponding to the lower and upper bounds 𝐶− and 𝐶+ are: 
 

𝐶−(𝑢1, 𝑢2) = max(𝑢1 + 𝑢2 − 1,0) 
𝐶+(𝑢1, 𝑢2) = min(𝑢1, 𝑢2) 

 
Any two-dimensional copula, 𝐶, satisfies the following ordering, which is called the concordance 
order (for distributions) or the stochastic order (for random variables) 
 

𝐶− ≺ 𝐶 ≺ 𝐶+ 
 
Another important special case is the product (or independence) copula, see  which is 𝐶𝑝(𝑢1, 𝑢2) =
𝑢1𝑢2. 
 
Two random variables, 𝑋1, 𝑋2 are said to be: 
 

(a) countermonotonic if 𝐶 = 𝐶− 
(b) independent if 𝐶 = 𝐶𝑝 
(c) comonotonic if 𝐶 = 𝐶+ 

 
Information on several of the above copulas (and on other probability distributions) is available here, 
including details of the following copulas: Clayton, Comonotonicity, Countermonotonicity, Frank, 
Generalised Clayton, Gumbel, Gaussian, Independence and t copulas. 
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