Efficient Monte Carlo simulation of portfolio value, value-at-risk and other portfolio metrics

Presentation to the 2022 ASTIN and AFIR/ERM Virtual Colloquia

By Malcolm Kemp Managing Director, Nematrian

21 June 2022

© Nematrian Limited 2022

- Introduction
- Proposed simulation approach: tri-segmented Monte Carlo
- Illustrative exercise

Introduction (1)

- Financial firms (and their regulators) often need estimates of portfolio values or of risk measures such as Value-at-risk (VaR), expected shortfall, ...
 - Sometimes these can be calculated analytically but more usually larger firms need to use simulation techniques. Similar picture in non-financial field.
- Traditional workhorse for this purpose is *Monte Carlo simulation*
 - In most basic form (equally probable) simulations are drawn randomly from relevant probability distribution characterising economic drivers impacting the (present) value of the (overall) portfolio payoff
 - Accuracy typically improves only in proportion to square root of number of simulations used, i.e. for accuracy ε requires $O(\varepsilon^{-2})$ sample draws
 - For large / complex books (especially with nested calculations), runtimes can be excessive to obtain an adequately low level of error

Introduction (2)

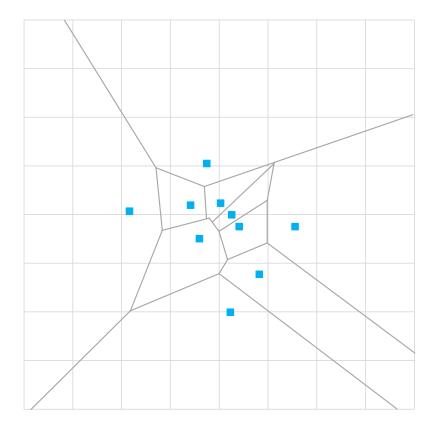
- Researchers have explored many ways of speeding up basic Monte Carlo including:
 - Antithetic variables (and other "moment fitting" techniques): e.g. if $S_+ = \mu + x$ included in simulation set then also include $S_- = \mu x$
 - Control variate techniques: approximation \tilde{P} to true payoff P is identified where \tilde{P} is quick to calculate and we estimate e.g. $\mathbb{E}(P)$ as $\mathbb{E}(\tilde{P}) + \mathbb{E}(P \tilde{P})$
 - Importance sampling (aka stratified sampling): preferentially draw samples from parts of underlying distribution expected to contribute most to error in the end answer, and adjust weights accordingly
 - Low discrepancy sequences: select points more uniformly across probability distribution space than would arise with pure random Monte Carlo draws
- Or throw (parallelised) computer resources (e.g. in the cloud), symbolic engines, quantum computers, ... at the problem

- Problem most acute when runtime cost of applying a given sample to overall portfolio is very large relative to runtime cost of drawing that sample from its (assumed given) underlying probability distribution
- Kemp (2019) "Improving valuation runtimes for derivative books" (Nematrian) proposed a "targeted quantile-spacing approach" which can address this:
 - Prepare a very large 'extended' simulation set, size N and use it to prepare a much smaller 'collated' simulation set, size n, with only the collated set actually applied to the portfolio
 - Simplest case, sort the N extended simulation set members and select for the collated set ones that are equally spaced in quantile terms across this set
- Unfortunately, Kemp (2019) approach only works well if the problem largely one dimensional, which is typically not the case for risk metrics such as VaR

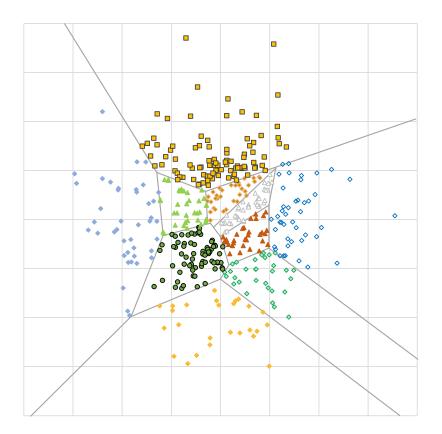
Proposed simulation approach: tri-segmented Monte Carlo

- **TSMC** combines control variate methods with methods like Kemp (2019)
- Randomly draw three different simulations sets from underlying probability distribution
 - "Underlying" set, Z_u , used for estimating \tilde{P} (or equivalent)
 - "Added" set, Z_a , used for estimating correction because $\tilde{P} \neq P$
 - "Extended" set, Z_e , used for estimating $\mathbb{E}(\tilde{P})$ or equivalent (c.f. Kemp (2019))
- Segment probability distribution space by the nearest point in Z_u ("Voroni cells") and choose \tilde{P} to be best fit to nearest say n_{fit} points of Z_u to that cell
- Choose numbers in sets N_u , N_a and N_e so that $N_u \ll N_e$ and $N_a \ll N_e$. Evaluate *P* only $N_u + N_e$ times, but \tilde{P} many more times

- Identify an underlying simulation set Z_u and use it to create Voroni cells and in each cell an approximation P
 to the true payoff P.
 - Voroni cells partition by the point in Z_u nearest to the relevant point in the space
 - Best fit *P* using generalised linear regression and suitable basis functions, fitting to nearest other points in *Z_u*
 - Constrain \tilde{P} so that $\tilde{P}(S_i^u) = P(S_i^u)$ for each S_i^u that is a member of Z_u (all other things being equal, S_i^u should be towards the middle of the relevant Voroni cell)

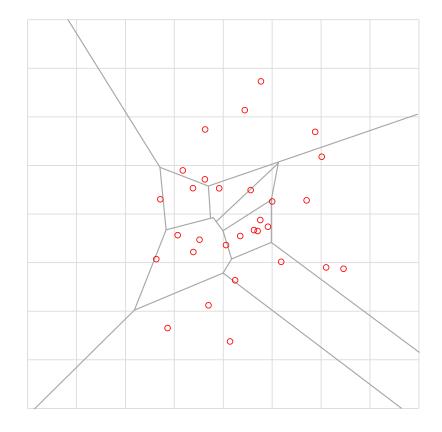


Identify an extended simulation set Z_e and estimate E(P), the expected value of P, by averaging across these simulations



© Nematrian Limited 2022

- Identify an added simulation set Z_a and use it to estimate $\mathbb{E}(P - \tilde{P})$, the expected value of $P - \tilde{P}$
- In practice probably do step 1 and 3 before step 2, to do all portfolio evaluations at the same time
- Potentially re-run for error estimation and/or bootstrap by randomly repartitioning Z_u U Z_a between underlying and added simulation sets



For VaR:

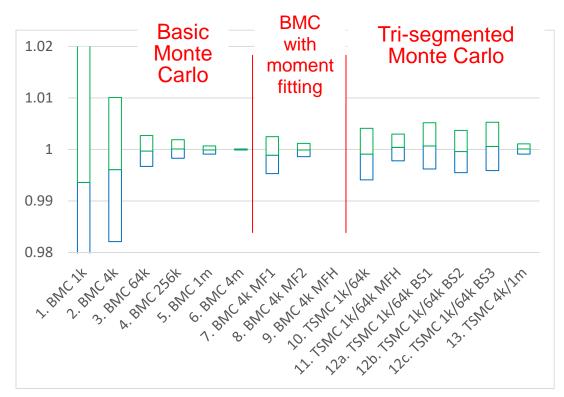
- Focus on losses, *L*, rather than present values, *P*. \tilde{L} will be very close to *L* for points very near to a S_i^u but could on average be biased in relevant VaR tail
- Could just assume a constant bias, but better seems to be to assume that there is a (e.g. linear) dependency between $L(S) \tilde{L}(S)$ and $\tilde{L}(S)$. Estimate VaR from the relevant quantile of the adjusted $\tilde{L}(S)$ for the extended simulation set
- Simplest choice of \tilde{P} is constant (= $P(S_i^u)$) within the cell defined by S_i^u
 - With this choice, subject to suitable regularity conditions, if N_u and N_a are large enough then, for large enough N_e , error will be less than for basic Monte Carlo
 - I.e. always optimal to use TSMC for large enough simulation sets and sufficiently time consuming to calculate payoffs (but unclear how large N_u and N_a need to be)
 - More sophisticated choices for \tilde{P} (or \tilde{L}) likely to improve on constant in-cell \tilde{P} (or \tilde{L})

Illustrative exercise

- Test using a hypothetical moderate (i.e. 10) dimensional problem involving reasonably well diversified book capable of being valued analytically
 - 40 unit European-style options each on one of 2 distinct rolled up (i.e. nondividend paying) indices following geometric Brownian motions (volatilities 10% pa and 20% pa), terms 1, 2, 3, 4 or 5 years, strikes 70%, 90%, 110% or 130%, interest rates assumed zero at outset and thereafter
- Distances between points in *m*-dimensional sample space (here m = 10) taken as Cartesian distance $|S_A - S_B| = \sqrt{\sum_{j=1}^m (S_{A,j} - S_{B,j})^2}$
- \tilde{P} chosen to involve best fit combinations of constant, linear, quadratic and "hockey stick" basis functions.
 - Simpler \tilde{P} can be fitted to fewer (so closer) n_{fit} nearby points but otherwise likely to fit less well. Analogy with least-squares Monte Carlo. Including quadratic and "hockey stick" basis functions seems particularly helpful.

Estimated errors for portfolio values for various approaches 12

- Charts show average and ± 1 s.d. for 32 runs per approach (as fraction of true portfolio value):
 - Basic Monte Carlo shows $O(\varepsilon^{-2})$ dependency
 - Each instrument onedimensional, can be valued well using high order moment fitting or Kemp (2019)
 - TSMC *m*/*n* provides error akin to BMC using *n* simulations but only evaluating portfolio payoff *m* times

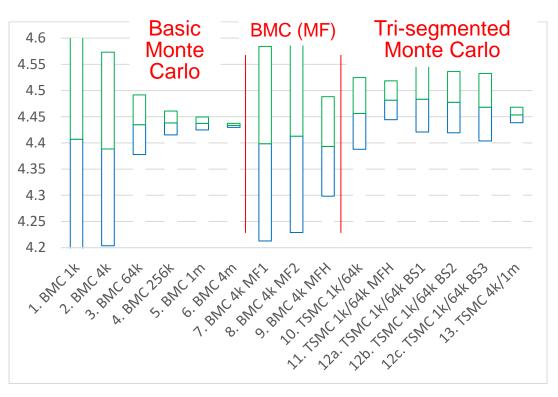


Source. Nematrian. Nomenclature:

- BMC n: Basic Monte Carlo with n simulations
- TMSC *m*/*n*: Tri-segmented Monte Carlo $m = N_u + N_a$, $n = N_e$ $(N_u = \frac{n}{4})$
- MF1, MF2, MFH: moment fitting approach if used where MF1 (fit observed to analytical means), MF2 (fit to analytical means + sds), MFH (fit to multiple lower moments); BS = bootstrapped from one of 3 single selections of Z_u ∪ Z_a
 © Nematrian Limited 2022

Corresponding results for 99.5% runoff loss quantiles

- C.f. "runoff" VaR (VaR to maturity)
 - Basic Monte Carlo still shows
 O(ε⁻²) dependency
 - Moment fitting less effective (problem no longer 1dimensional)
 - TSMC *m*/*n* error still like BMC *n*, but with a modest bias
- Bootstrapping TSMC seems to provide reasonable error estimates

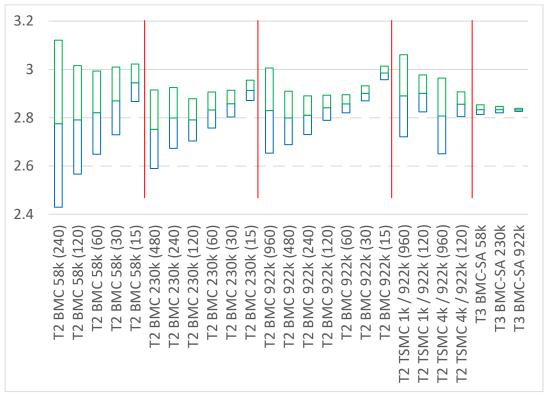


Source: Nematrian. Nomenclature:

- BMC n: Basic Monte Carlo with n simulations
- TMSC m/n: Tri-segmented Monte Carlo $m = N_u + N_a$, $n = N_e$ $(N_u = \frac{n}{4})$
- MF1, MF2, MFH: moment fitting approach if used where MF1 (fit observed to analytical means), MF2 (fit to analytical means + sds), MFH (fit to multiple lower moments); BS = bootstrapped from one of 3 single selections of Z_u ∪ Z_a
 © Nematrian Limited 2022

Corresponding results for one-year 99.5% loss quantiles

- C.f. "1 year" VaR
 - Higher runtimes as in general a nested calculation (inner simulation to value portfolio at end year 1 conditional on outcome during year)
 - In this situation we can do the inner calculation analytically to estimate 'true' answer more precisely (see right hand end of chart)
 - TSMC *m*/*n* error still like BMC *n*
 - But again TSMC seems to exhibit a modest bias



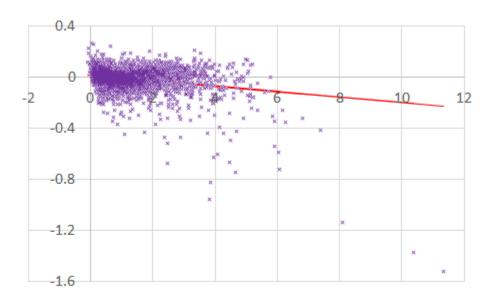
Source: Nematrian. Nomenclature:

- BMC n (y) and TSMC m/n (y): n overall simulations (for TSMC simulations within extended simulation set) with y inner simulations per outer simulation
- BMC-SA is "semi-analytical", i.e. year 1 value derived analytically for each instrument, simulation applied only to year 1 evolution

© Nematrian Limited 2022

Analyse $L(S_j^a) - \tilde{L}(S_j^a)$ to infer likely behaviour of $L(S_i^e) - \tilde{L}(S_i^e)$

- E.g. plot to visualise dependency on $\tilde{L}(S_j^a)$, to determine most appropriate form of VaR bias adjustment
- E.g. quantify average and spread of $P(S_j^a) \tilde{P}(S_j^a)$ or $L(S_j^a) \tilde{L}(S_j^a)$ to place practical limits on VaR error, to estimate likely control variate variance ratio for different metaparameters (to assist in selection of N_a and N_e relative to N_u) and to help select basis function types
- Z_u akin to a "training" set, Z_a akin to a "testing" set



Source: Nematrian. In chart, *x*-axis is $\tilde{L}(S_j^a)$ (as multiple of overall analytically derived portfolio value), *y*-axis is $L(S_j^a) - \tilde{L}(S_j^a)$. S_j^a are the points in Z_a .

- For sufficiently complex portfolios / nested calculations, tri-segmented Monte Carlo simulation always in the limit better runtime-wise than basic Monte Carlo
- If a complex portfolio behaved like the book illustrated here then significant runtime improvements might be achievable (64-fold or better)
- Finding the Voroni cell in which a given simulation sample lies can be time consuming but can be parallelised
- For actuaries, approach is akin to proxy modelling of the simulation set rather than of the liability profile
 - Proxying the simulation set may be easier to justify, e.g. by using analyses as per previous slide

